
Informix Dynamic 4GL
User Guide
Version 3.0
July 1999
Part No. 000-5412

ii Informix Dynamic 4GL
Published by INFORMIX Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation or its
affiliates:

Answers OnLineTM; CBT StoreTM; C-ISAM; Client SDKTM; ContentBaseTM; Cyber PlanetTM; DataBlade; Data
DirectorTM; Decision FrontierTM; Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic ServerTM,
Developer EditionTM; Dynamic ServerTM with Advanced Decision Support OptionTM; Dynamic ServerTM with
Extended Parallel OptionTM; Dynamic ServerTM with MetaCube ROLAP Option; Dynamic ServerTM with
Universal Data OptionTM; Dynamic ServerTM with Web Integration OptionTM; Dynamic ServerTM, Workgroup
EditionTM; FastStartTM; 4GL for ToolBusTM; If you can imagine it, you can manage itSM; Illustra; INFORMIX;
Informix Data Warehouse Solutions... Turning Data Into Business AdvantageTM; INFORMIX-Enterprise
Gateway with DRDA; Informix Enterprise MerchantTM; INFORMIX-4GL; Informix-JWorksTM; InformixLink;
Informix Session ProxyTM; InfoShelfTM; InterforumTM; I-SPYTM; MediazationTM; MetaCube; NewEraTM;
ON-BarTM; OnLine Dynamic ServerTM; OnLine for NetWare; OnLine/Secure Dynamic ServerTM; OpenCase;
ORCATM; Regency Support; Solution Design LabsSM; Solution Design ProgramSM; SuperView; Universal
Database ComponentsTM; Universal Web ConnectTM; ViewPoint; VisionaryTM; Web Integration SuiteTM. The
Informix logo is registered with the United States Patent and Trademark Office. The DataBlade logo is
registered with the United States Patent and Trademark Office.

Documentation Team: Mary Leigh Burke, Elaina Von Haas, Jennifer Leland, Mary Kraemer, Kathy Eckardt

Contributors: Jonathan Leffler

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.
 User Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Guide 3

Organization of This Guide 3
Types of Users 5
Software Dependencies 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Additional Documentation 7
Informix Welcomes Your Comments 8

Chapter 1 Introducing Dynamic 4GL
In This Chapter 1-3
Introducing Dynamic 4GL 1-3

Windows Interface 1-3
Web Interface 1-4
Text Interface 1-4
GLS Support. 1-4
Dynamic 4GL Three-Tier Client/Server Architecture 1-5

Differences Between Dynamic 4GL and 4GL 1-7
4GL Extensions 1-10
New Features in Dynamic 4GL 1-12

Main Features 1-12
Graphical Improvements 1-13
New 4GL Language Features in the 7.3 Release. 1-13

iv Inform
Chapter 2 Installing Dynamic 4GL
In This Chapter 2-3
Before Installing Dynamic 4GL 2-3

Upgrading Dynamic 4GL 2-4
Supported Operating Systems 2-4
Hardware Requirements 2-5
C-Compiler Requirements 2-6
Informix Client SDK 2-7
Dynamic 4GL Directory 2-7

Installing Dynamic 4GL on UNIX 2-8
Displaying the Installation Options 2-8
Installing Without a CD 2-9
Installing the Dynamic 4GL Files 2-10
GLS Installation 2-11
Licensing the Software 2-11
Compiling the Libraries 2-12
Creating the Environment Shell Script 2-13

Preparing to Install Dynamic 4GL on Windows NT 2-14
C-Compiler Requirement 2-14
Informix Database Server Requirement 2-14
TCP/IP Requirement 2-15
Hardware Prerequisite 2-15
Recommended Windows Client Prerequisite 2-15

Installing Dynamic 4GL on Windows NT 2-15
Dynamic 4GL Installation 2-15
Configuring Dynamic 4GL for Windows NT 2-18
Connecting to a Windows NT Database Server 2-19

Post-Installation Tasks 2-21
Installing and Configuring the Ataman Remote Login Service . . 2-22

Chapter 3 Basics of Using Dynamic 4GL
In This Chapter 3-3
Setting the Environment Variables 3-3
Compiling a Simple Program 3-4

Writing the Source Code 3-5
Compiling the Source Code 3-6
Compiling the Form-Specification File 3-7
Viewing the Dynamic 4GL Application 3-8
ix Dynamic 4GL User Guide

Chapter 4 Using the Dynamic 4GL Compiler
In This Chapter 4-3
Setting Environment Variables for the Compiler 4-3
Compiling Form-Specification Files and Help Message Files . . . 4-4

Compiling Form-Specification Files 4-4
Compiling Help Message Files 4-5

Generating a Database Schema File 4-5
Compiling to P Code 4-6

Overview of a P-Code Example 4-6
Using C Functions in 4GL Applications 4-8

Compiling to C Code 4-19
Overview of a C-Code Example 4-19
Using C Functions in 4GL Applications 4-21

Compilation Tools 4-26
Main Compilation Tools 4-27
Other Compilation Tools 4-27
Configuration Tools 4-28
Miscellaneous Programs and Scripts 4-28

Chapter 5 Using Non-Graphical Extensions to 4GL
In This Chapter 5-3
Channel Extensions 5-3

Initializing Channel Extensions 5-4
Opening a File 5-4
Opening a Pipe 5-5
Setting the Default Separator 5-6
Reading Data from an Opened Channel 5-6
Writing Data to a Pipe or Stream 5-7
Channel Error Codes 5-8

Sharing Information Using DDE 5-8
Supported Windows Applications 5-9
Using DDE Extensions 5-9
Transmitting Values to a Windows Program 5-11
Getting Values from a Windows Program 5-12
Closing a DDE Connection 5-13
Closing all DDE Connections 5-13

Extending the DISPLAY ARRAY Statement 5-14
Table of Contents v

vi Inform
Returning Key Code Values 5-15
Returning Key Codes from P Code 5-16
Returning Key Codes from C Functions 5-18
Creating a Custom Character Filter 5-18

Starting a UNIX Emulator 5-19
Starting Windows Applications 5-20
Using Input Statement Functions 5-21

Returning a Value if a Field has been Modified 5-21
Returning the Name of a Field 5-23
Returning the Value of a Field 5-23
Setting the Value in a Field 5-23
Displaying a Row at a Given Line in a Screen Array. 5-24
Returning the Position of the Cursor 5-27

Terminating Applications 5-29
New Language Features 5-29

Enhanced SQL Syntax Support 5-30
Syntax for Expansion of Abbreviated Year Values 5-34
Enhanced Syntax for Screen Array Management 5-38
Dynamic Configuration of Report Output 5-46
New Built-In Operators 5-48
New Syntax to Hide the Comment Line 5-50
Editing Multibyte Data in 4GL Forms. 5-51
New Conditional Comments. 5-53

Chapter 6 Using Form Extensions to 4GL
In This Chapter 6-3
Implementing List Boxes 6-4
Implementing Buttons 6-6

Menu Buttons 6-6
Hot-Key Buttons 6-6
Buttons in the Form 6-9

Implementing Bitmaps 6-11
Implementing Check Boxes and Radio Buttons 6-11

Check Box Syntax 6-11
Radio Button Syntax 6-12
Invoking a Key Code 6-13

Combo Fields 6-14
Implementing Scrolling Fields 6-15
Creating Folder Tabs 6-16
ix Dynamic 4GL User Guide

Chapter 7 Using Graphical Extensions to 4GL
In This Chapter 7-3
Display Extensions 7-3

Calling Dynamic 4GL Libraries 7-3
Checking for UNIX or Windows 7-4
Checking for Windows Client Mode 7-5

Window-Management Functions 7-6
Setting the Default Size of a Window 7-6
Setting the Title of a Window 7-7
Retrieving Information from a Field. 7-8
Retrieving Information from an Application Window . . . 7-8
Setting the Active Window 7-10
Closing a Window 7-10

Creating Toolbars and Toolbar Icons 7-11
Creating Dialog Boxes 7-12

Creating an Interactive Message Box 7-12
Displaying an Interactive Message Box. 7-14
Formatting Text in a Message Box 7-15
Entering a Field Value into a Message Box 7-16

Using Drawing Extensions 7-17
Mouse-Management Functions 7-18
Defining the Drawing Area. 7-19
Initializing the Drawing Function 7-20
Selecting a Drawing Area 7-20
Specifying the Text Insertion Point 7-21
Setting Line Width. 7-22
Clearing the Draw Function 7-22
Drawing Rectangles 7-23
Setting the Fill Color 7-23
Drawing an Oval 7-23
Drawing a Circle 7-24
Drawing a Line 7-24
Drawing Text 7-25
Drawing an Arc. 7-25
Drawing a Polygon 7-26
Table of Contents vii

viii Infor
Chapter 8 Configuring the Dynamic 4GL Compiler
In This Chapter 8-3
Configuring Dynamic 4GL 8-3

Runtime Configuration File 8-4
User Configuration File 8-4
Program Configuration File 8-4

General Configuration Settings 8-5
Runtime Configuration Settings 8-6

General Settings 8-6
Graphical Daemon Autostart 8-9
UNIX Settings 8-10
Microsoft Windows Settings 8-11

License Configuration Settings 8-14
General Settings 8-14
UNIX Settings 8-16

GUI Settings . 8-17
General GUI Settings 8-17
Menu GUI Settings 8-19

Status Bar Settings 8-36
Memory Mapping Settings 8-37
Local Editing Settings 8-38
Cut, Copy, and Paste Feature Settings 8-39

Chapter 9 Using the Configuration Manager
In This Chapter 9-3
About the Configuration Manager 9-3
Starting the Configuration Manager 9-3

Starting on UNIX. 9-4
Starting on Windows 9-4

Using the Dynamic 4GL Configuration Manager 9-4
File Menu 9-5
Widget Menu 9-5
The Help Menu 9-9

How to Configure an Object with the Configuration Manager . . . 9-10
Opening a File. 9-10
Configuration Types. 9-10
The Different Configurations. 9-12
mix Dynamic 4GL User Guide

Chapter 10 Using the HTML Client
In This Chapter 10-5
Web Deployment Architecture 10-6

Why Deploy on the Web? 10-7
HTML Client Limitations 10-8
HTML Client Enhancements 10-9

Installing the HTML Client 10-9
Installing on UNIX 10-9
Installing on Windows NT 10-13

How Web Deployment Works at Runtime 10-16
Supplying Your Own Headers and Footers 10-19
Disabling Password Display 10-19
Similarities Between a .per File and an .html File 10-19

Deploying a Sample Application 10-20
Screens. 10-22
Step 1: Creating a Dynamic 4GL Application. 10-22
Step 2: Editing the Server Configuration File 10-23
Step 3: Creating a Script to Initialize the Application 10-31
Step 4: Editing Your Client Configuration File 10-31
Step 5: Starting the HTML Server Process on UNIX 10-31
Step 6: Starting the Browser 10-32
Step 7: Using the Application 10-32
Step 8: Enhancing the Application 10-36
Creating Email and Web Site Links 10-36
Enhancing the Screen Files 10-37
Horizontal split 10-39
Table . 10-39
How Links Between Pages Work 10-40
HTML Emulation for Tables 10-41
Dynamic 4GL Features 10-41

Security Levels 10-44
Default Security 10-44
Recommendations for Enhancing Security 10-46
Application, Web Server, and Database Security 10-46
Preventing Security Problems 10-47

Configuring the Web Deployment Software 10-48
Table of Contents ix

x Inform
Configuration Settings in the fglcl.conf file 10-48
Location . 10-48
fglserver . 10-49
debug. 10-49
HTMLdebug 10-50
Security . 10-50
Security Through the Web Server 10-51
Security Through the File System 10-51
Summary 10-52

Configuring the appname.conf File 10-52
General Configuration Settings 10-52
Pre and Post Messages 10-56
Styles . 10-59
Spawning 10-63
Arrays . 10-65

Troubleshooting the UNIX Installation 10-66
Checking the HTML Client 10-66
Checking the HTML Server 10-68

Manual Installation on UNIX 10-69
Extracting the Files 10-69
Installing the HTML Client on the Web Server. 10-70
Installing the HTML Server on the Application Server 10-71
Installing the HTML Documentation on the Web Server . . . 10-72
Installing the Example 10-72

Troubleshooting the Windows NT Installation 10-73
Checking the HTML Client 10-73
Checking the HTML Server 10-73

Chapter 11 Using the Java Client
In This Chapter 11-3
Introduction . 11-3

Programs and Applets 11-4
Swing. 11-5
Server-Side Components 11-5
How Dynamic 4GL Uses Java 11-5
Java Client Limitations 11-8
Java Client Security 11-8
Java Client Definitions 11-8
ix Dynamic 4GL User Guide

Requirements 11-11
Java Client Web Browser Requirements 11-11
Client Java Applet Viewer Requirements 11-12
Web Server Hardware and Software Requirements 11-13
Dynamic 4GL Application Server Requirements 11-13

Installing the Java Client 11-14
UNIX Installation 11-14
Windows NT Installation 11-20
Additional Installation Tasks 11-23

Configuring the Java Client 11-37
Editing the cjac.cnf File 11-38
Sample cjac.cnf file. 11-45
Editing the clijava.cnf File 11-49

Running an Application with the Java Client 11-54
Creating the HTML Page 11-54
Setting CJA Parameters 11-55
Running the Application 11-56
Java Client Enhancements 11-57

Chapter 12 Using the Windows Client
In This Chapter 12-3
Windows Client Architecture 12-3

Windows Client Requirements 12-4
Dynamic 4GL Server Requirements 12-5
Installing the Windows Client 12-5
Installing the Windows Client on a Network. 12-8

Starting and Configuring the Windows Client 12-9
Starting the 4GL Server 12-9
Creating a Connection 12-9
Connection Checking 12-11
Windows Client Language 12-13
Setting the Server Environment Variables 12-14
Using the VGA Driver with Windows 3.1 12-15

Running the Windows Client Example 12-15
Configuring the Environment Variables 12-17
Starting a P-Code Application 12-18
Authorizing the Client Computer 12-18
Starting a C-Code Application. 12-19
Successful Connection 12-19
Table of Contents xi

xii Inform
Security Features 12-20
Authorizing a Connection. 12-20
Connecting Without a Password 12-21

Command-Line Features 12-22
Special Tags Features 12-22
ilogin Command-Line Features 12-24

Customizing the Login Dialog Box 12-27
Using Ataman Remote Connection Services 12-29

Adding a Scrollbar to the Terminal Emulation Window 12-30
System Colors 12-31
Customizing the Windows Client Installation 12-31

Customizing Icons, Titles, and Directories 12-32
Specifying the Windows Client Icons 12-32
Installing Documentation 12-36

Configuration Files 12-37
Configuration File (WTKSRV.INI) Entries 12-37
Splash Screen Configuration 12-43

User-Defined Configuration File 12-47
User-Definable WTKSRV.INI Entries 12-48

Winframe from CITRIX 12-50
First Method 12-50
Second Method 12-52

Chapter 13 Using the X11 Client
In This Chapter 13-3
UNIX X11 Client Configuration 13-3

Installing the X11 Client 13-4
Managing Application Windowing 13-5
Running the Program on the X11 Client 13-8

Appendix A Environment Variables

Appendix B Common Problems and Workarounds

Appendix C Error Messages

Appendix D Global Language Support

Index
ix Dynamic 4GL User Guide

Introduction
Introduction
In This Introduction 3

About This Guide 3
Organization of This Guide 3
Types of Users 5
Software Dependencies 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Additional Documentation 7

Informix Welcomes Your Comments 8

2 Inform
ix Dynamic 4GL User Guide

In This Introduction
This introduction provides an overview of the information in this guide and
describes the conventions used.

About This Guide
The Informix Dynamic 4GL User Guide describes how to develop 4GL
applications on UNIX and Windows NT, and then deploy them, in either
graphical or text mode, on various platforms, such as Windows 95, Windows
NT, and X11 Window System clients.

This guide assumes that you already have a complete set of INFORMIX-4GL
manuals, such as the INFORMIX-4GL Reference and the appropriate SQL
manuals. This guide should be used in addition to the 4GL manuals.

Organization of This Guide
This guide includes the following chapters:

■ Chapter 1, “Introducing Dynamic 4GL,” introduces Dynamic 4GL.

■ Chapter 2, “Installing Dynamic 4GL,” describes how to install
Dynamic 4GL on both UNIX and Windows.

■ Chapter 3, “Basics of Using Dynamic 4GL,” explains how to set
environment variables and compile a simple program in Dynamic
4GL.

■ Chapter 4, “Using the Dynamic 4GL Compiler,” describes how to
compile various types of files and how to compile to P code or C
code.
Introduction 3

Organization of This Guide
■ Chapter 5, “Using Non-Graphical Extensions to 4GL,” describes the
features that have been added that extend the functionality of 4GL.
These features do not affect the graphical interface.

■ Chapter 6, “Using Form Extensions to 4GL,” describes the features
that have been added that extend the functionality of 4GL forms.

■ Chapter 7, “Using Graphical Extensions to 4GL,” describes the
features that have been added that extend the functionality of 4GL.
These features affect the graphical user interface (GUI).

■ Chapter 8, “Configuring the Dynamic 4GL Compiler,” describes how
to edit the fglprofile file to change the behavior of the Dynamic 4GL
compiler.

■ Chapter 9, “Using the Configuration Manager,” describes how to use
the Configuration Manager to change the look of a GUI.

■ Chapter 10, “Using the HTML Client,” describes how to deploy your
Dynamic 4GL applications on a Web server and enhance the
appearance of the Dynamic 4GL application for display with a Web
browser.

■ Chapter 11, “Using the Java Client,” describes how to install,
configure, and execute the Java Client.

■ Chapter 12, “Using the Windows Client,” describes how to install,
configure, and execute the Windows Client.

■ Chapter 13, “Using the X11 Client,” describes how to install,
configure, and execute the X11 Client.

■ Appendix A, “Environment Variables,” describes the environment
variables you need to know about to use Dynamic 4GL.

■ Appendix B, “Common Problems and Workarounds,” provides
workarounds for common problems that you might encounter.

■ Appendix C, “Error Messages,” lists the messages in numerical order
and describes how to correct the situation that initiated the error
message.

■ Appendix D, “Global Language Support,” describes how to use the
GLS features with Dynamic 4GL.
4 Informix Dynamic 4GL User Guide

Types of Users
Types of Users
This guide is written for all Dynamic 4GL users.

This guide is written with the assumption that you have the following
background:

■ A thorough knowledge of INFORMIX-4GL

■ Some experience working with relational databases or exposure
to database concepts

Software Dependencies
This guide is written with the assumption that you are using a supported
Informix database server.

Documentation Conventions
This section describes the conventions that this guide uses. These
conventions apply to all Informix documentation.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions
Introduction 5

Typographical Conventions
Typographical Conventions
This guide uses the following conventions to introduce new terms, illustrate
screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞Options” means choose the Options item from the
Tools menu.
6 Informix Dynamic 4GL User Guide

Icon Conventions
Icon Conventions
Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Additional Documentation
Dynamic 4GL documentation is provided in a variety of formats:

■ Printed documentation. The Informix Dynamic 4GL User Guide is
available as a printed guide.

■ On-line manuals. You have the ability to print chapters or entire
books and do full-text searches for information in specific books or
throughout the documentation set. On-line manuals are available
through Answers OnLine. You can order Answers OnLine on a CD,
or if you have access to the Web, visit the following URL:
www.informix.com/answers.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant infor-
mation about the feature or operation that is being
described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described
Introduction 7

Informix Welcomes Your Comments
■ Release notes. Release notes are located in the /release directory
where the product is installed. Please examine these files because
they contain vital information about application and performance
issues.

■ HTML files. Some additional documentation about Web server
configuration is provided in supplementary HTML files. See
“Installing the HTML Documentation on the Web Server” on
page 10-72 for more information.

Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the guide that you are using

■ Any comments that you have about the guide

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your suggestions.
8 Informix Dynamic 4GL User Guide

1
Chapter
Introducing Dynamic 4GL
In This Chapter . 1-3

Introducing Dynamic 4GL 1-3
Windows Interface 1-3
Web Interface 1-4
Text Interface 1-4
GLS Support. 1-4
Dynamic 4GL Three-Tier Client/Server Architecture 1-5

Dynamic 4GL Client Example 1-6
Dynamic 4GL Architecture 1-6

Differences Between Dynamic 4GL and 4GL 1-7

4GL Extensions . 1-10

New Features in Dynamic 4GL. 1-12
Main Features 1-12
Graphical Improvements 1-13
New 4GL Language Features in the 7.3 Release. 1-13

1-2 Infor
mix Dynamic 4GL User Guide

In This Chapter
This chapter introduces you to the features of Dynamic 4GL, including the
differences between the 4GL compiler and the Dynamic 4GL compiler.

Introducing Dynamic 4GL
Dynamic 4GL allows you to recompile your 4GL source code, transforming
your existing text-based applications into a thin client/server system that can
display your 4GL application with a graphical user interface (GUI).

In addition to your 4GL routines, you can enhance your applications for
display with a GUI using Dynamic 4GL extensions. For example, you might
add check boxes or list boxes to your GUI by enhancing your current 4GL
source code.

Windows Interface
The GUI is displayed by a graphics server running on the client. The graphics
server can be either X11 or a Windows version of the Tcl/Tk software, called
WTK, which is provided with the Dynamic 4GL software.

By changing a single environment variable, you can also execute your
programs in ASCII mode. This means that users access your programs in the
same way they would access 4GL programs-by logging on to the same
computer that runs the programs. The ease by which you can change modes
allows you to control the migration rate of your client computers.
Introducing Dynamic 4GL 1-3

Web Interface
Web Interface
You can also provide a GUI for your Dynamic 4GL applications through any
compatible Web browser. You can use either HTML or Java to do this. To use
HTML, you run a daemon provided with the Dynamic 4GL software that
converts the output of your program to HTML. To use Java, you must have a
Web server that supports servlets. The 4GL source code does not need to be
converted to use either method.

Text Interface
You can, of course, continue to display your Dynamic 4GL applications using
text or ASCII.

GLS Support
Dynamic 4GL supports Informix Global Language Support (GLS). The GLS
feature allows Informix database servers to handle different languages,
cultural conventions, and code sets.

While Dynamic 4GL is fully compliant with Informix GLS, there are some
restrictions. You cannot use GLS with the Dynamic 4GL HTML or X11 Client.
In addition, you must be using 4GL 7.2 or later (this version is the first 4GL
version to support GLS).
1-4 Informix Dynamic 4GL User Guide

Dynamic 4GL Three-Tier Client/Server Architecture
Dynamic 4GL Three-Tier Client/Server Architecture
By a simple recompilation with Dynamic 4GL, the 4GL sources are trans-
formed into a three-tier client/server system, as Figure 1-1 shows. This
system facilitates migration from ASCII-based terminals to systems with a
GUI.

Dynamic 4GL uses this architecture in the following ways:

■ The 4GL application is compiled in P code and deployed on the
application server where a Dynamic Virtual Machine (DVM) is
installed.

■ Dynamic 4GL can access a database server anywhere on the network.

■ Dynamic 4GL can be accessed by ASCII, X11, or Windows clients.

■ A Web server can access Dynamic 4GL.

■ The Java and HTML clients can access Dynamic 4GL through the Web
Server.

Figure 1-1
4GL Three-Tier

Client/Server
Architecture
Introducing Dynamic 4GL 1-5

Dynamic 4GL Three-Tier Client/Server Architecture
Dynamic 4GL Client Example

Figure 1-2 shows a 4GL application before and after it was converted to a
Windows client.

Dynamic 4GL Architecture

The application server can be a UNIX server or a Windows NT computer. In a
typical installation, Dynamic 4GL is installed on the application server (either
the development or runtime version) with the 4GL programs. The database
server is usually installed on this same computer, but this is not required.

The client computers can be X11 compliant interfaces or Windows computers.
Each client has its own Dynamic 4GL daemon that handles the GUI aspects of
4GL applications.

Figure 1-2
4GL Application Converted

to a Windows Client

4GL ASCII application...

...recompiled using Dynamic 4GL for a Windows client.
1-6 Informix Dynamic 4GL User Guide

Differences Between Dynamic 4GL and 4GL
Differences Between Dynamic 4GL and 4GL
Dynamic 4GL is based on the features in Version 7.3 of 4GL. However, it is
possible to compile programs created with older versions of 4GL.

The following list summarizes the differences between Dynamic 4GL and
4GL:

■ Initialization of variables. The 4GL compiler initializes global
variables with empty structures, whereas the Dynamic 4GL compiler
initializes them to null.

The 4GL compiler initializes decimal variables to 0, and the Dynamic
4GL compiler sets them to null, like INFORMIX-4GL Rapid Develop-
ment System (RDS).

■ Datetime. With the instruction CURRENT, the Dynamic 4GL compiler
manages three positions of the fraction part, whereas 4GL manages
only two.

■ Arrays. If you call for an index that is out of range of an array, the
Dynamic 4GL compiler can either stop execution of the program with
a runtime error, or it can return NULL for the non-existing elements
of an array and continue with the program. Use the entry
fglrun.arrayIgnoreRangeError in the configuration files if you want
the compiler to continue execution.

■ Input array. If you use an INPUT or INPUT ARRAY instruction in
Dynamic 4GL, be sure that at least one field is not declared as
noentry .

The following example shows an INPUT ARRAY instruction where
Informix accepts all fields declared as noentry :

INPUT ARRAY rec_array WITHOUT DEFAULTS FROM scr_arr.*

BEFORE ROW
EXIT INPUT

END INPUT
Introducing Dynamic 4GL 1-7

Differences Between Dynamic 4GL and 4GL
■ Mouse usage. Creating graphical applications in Dynamic 4GL
makes it possible to use the mouse to move from one field to another
directly, without passing by an intermediate field in the INPUT
statement. Therefore, an entry exists in the configuration file that
allows you to execute all the intermediate triggers when users move
from one field to another. This entry is named dialog.fieldOrder.

Right-clicks and double-clicks are also supported. The following two
entries in the configuration files accommodate these mouse actions:

gui.key.doubleClick.left= " key " # default is KEY_accept
gui.key.click.right = " key " # default is F36

■ Reports. Normally, if any value that is part of an aggregate function
(avg,sum,…) is NULL, the result of the function is also NULL. In
Dynamic 4GL reports, you can have aggregates return 0 in such a
case by setting the report.aggregateZero entry in the configuration
file.

Also in reports, it is possible to use a global variable to define the
PAGE LENGTH of a report. Simply set this variable to the desired
value before calling the START REPORT statement.

■ Cursors scope range. With Informix 7.x servers, you can choose the
scope range for cursors at compile time. By default the cursor scope
is local to the module, but it can be defined to be global to the appli-
cation. To configure this behavior, use the fglrun.cursor.global entry
in the configuration file. This choice is made at runtime with
Dynamic 4GL.

■ Menu. In Dynamic 4GL, the 4GL menu can be displayed either on the
top of the application window or on the right side of the screen on
top of the hot key buttons. Use the menu.style entry in the configu-
ration file to choose the position of the menu in the application
window.

It is also possible to have a bitmap displayed on menu buttons. To do
so, precede the label by the character @, for example:

 menu "blabla"
 command "@stop.bmp"
 exit program
 command "hello"
 exit menu
 end menu
1-8 Informix Dynamic 4GL User Guide

Differences Between Dynamic 4GL and 4GL
■ The sqlexit statement. The sqlexit() function provides a way of
terminating the sqlexec process. It must be invoked as follows:

CALL --#sql:
sqlexit()

You must restart the sqlexec process before the next SQL statement.
Use the following statement:

DATABASEdatabasename

■ PROMPT. In Dynamic 4GL, the 4GL PROMPT statement waits for an
answer in the graphical window at the prompt line if the graphical
window is opened first. If no graphical window is open before the
PROMPT statement is executed, the prompt is made in the ASCII
terminal, for example:

MAIN
DEFINE C CHAR (1)
DISPLAY "Hello"
PROMPT "Press any key" FOR CHAR C
END MAIN

❑ In the previous example, PROMPT is executed in the terminal
and in terminal mode even if you are in graphical mode.

❑ The following example shows how to execute PROMPT in
graphical mode:
MAIN
DEFINE C CHAR (1)
DISPLAY "Hello" AT 5,5
PROMPT "Press any key" FOR CHAR C
END MAIN
Introducing Dynamic 4GL 1-9

4GL Extensions
4GL Extensions
The following list summarizes the features that were added to the 4GL
language:

■ Channel functions. Channel functions are a way to use I/O streams.
Channel extensions provide access to the files and the processes of
the system without using the RUN statement. Your application
requires fewer resources than with the RUN statement and allows
you to communicate with pipes with other applications.

■ DDE functions. DDE functions call a Windows application from 4GL.
With this new extension, you can invoke a Windows application and
send or receive data to or from it. To use this new functionality, the
program must be executed on a Windows computer or on a UNIX
computer but from a Windows front end.

■ fgl_system() function. You can run a program using a UNIX terminal
to display the output. Even if the running Dynamic 4GL program has
been started without a visible terminal with the Windows front end,
the UNIX terminal will be started and placed in the foreground
during the execution of the external program. Then it will be placed
in the background or disappear when the program using it is
finished.

■ Canvas functions. This set of functions allows you to draw basic
shapes in 4GL in an area defined like an array.

■ Retrieving the key pressed using fgl_getkey(). This function waits
for a keystroke and returns the key code of a pressed key.

■ Field functions. These functions have been added to manage fields
from the 4GL source code. You can, for example, find out the name of
a field, set or get the value dynamically, and set or get the cursor
position in a field.

■ Window functions. Like the field functions, these functions have
been added to manage the different windows in your 4GL applica-
tions. You can use them to find out the name of the current window,
its size, and other characteristics.
1-10 Informix Dynamic 4GL User Guide

4GL Extensions
■ New form specification and function. These new specifications add
several features. Several specifications run only in graphical mode,
such as check boxes, radio buttons, and .bmp fields. Some others
allow you to manage fields from the form, such as scrolling fields, no
list attributes, key definitions, and drawing attributes.

■ New 4GL dialog box functions. You can create different types of
dialog boxes. You can add a title and window size independently
from your source specification. You can also draw items or dynami-
cally change the labels on buttons.

■ New triggers for the DISPLAY ARRAY statement. The DISPLAY
ARRAY statement now accepts [BEFORE|AFTER|EXIT|CONTINUE]
DISPLAY and [BEFORE|AFTER] ROW statements.

■ Toolbars. A toolbar can be added to the top of the screen to represent
frequently used commands.

■ The report pager. A pager has been written that allows you to scroll
reports that appear on the screen. For wide reports of more than 80
columns, you can also scroll horizontally. The correct sizing of the
vertical scrollbar requires a PAGE TRAILER. To switch to the previous
or next page, click a button.

To manage interruption of the display, the int_flag has to be tested
after every OUTPUT TO REPORT instruction.

The pager.42e command starts the graphical editor used to display
reports in C code. The fglpager command starts the graphical editor
used to display reports in P code. The same pager can be used from
the UNIX prompt for the C version:

$ pager.42e [filename]

or on Windows NT for the P-code version:
$ fglpager [filename]
Introducing Dynamic 4GL 1-11

New Features in Dynamic 4GL
The fglpager command has the same functionality as pager.42e
except that:

❑ you can only scroll 10 pages backwards.

❑ you can see all pages, but you must specify a database name as
parameter -d dbname because the page uses temporary tables.

Reports in 4GL programs can also use temporary tables. Because
they use a lot of space, you must first call the function
fgl_report_use_temptable() to enable them. Otherwise, you can
see only 10 pages backwards.

❑ If you execute the report with FGLGUI=0, the pager will display
all the report without stopping after each page.

■ Screen record without size. With fglform (.per compiler), you are
not required to specify the screen record size, but if you do not
specify the size, you will not have a scrollbar.

■ Character filter. You can define conversion files to be used for
characters on the GUI.

New Features in Dynamic 4GL
The following features are new to Dynamic 4GL.

Main Features
Dynamic 4GL provides GLS and Java client support, as follows:

■ GLS support. Allows Informix database servers to handle different
languages, cultural conventions, and code sets. For more infor-
mation, refer to Appendix D, “Global Language Support.”

■ Java client. Allows 4GL applications to be displayed as a Java applet
within a browser with little or no recoding. For more information,
refer to Chapter 11, “Using the Java Client.”
1-12 Informix Dynamic 4GL User Guide

Graphical Improvements
Graphical Improvements
Dynamic 4GL has the following graphical feature enhancements:

■ Local Editing. Enables the client to wait until an entire value has
been entered into a field before submitting the information to the
application server. For more information, refer to “Local Editing
Settings” on page 8-38.

■ Cut and Paste. Enables standard cut and paste functionality within
the Windows Client or X11 Client. For more information, refer to
“Cut, Copy, and Paste Feature Settings” on page 8-39.

■ Folder Tabs. Allows multiple screen forms to be displayed using
folder tabs (appear similar to Windows folder tabs) enabling the user
to easily navigate between multiple screens. For more information,
refer to “Creating Folder Tabs” on page 6-16.

■ New terminate handler. Allows a standard close window option to
appear in the upper-right corner of a GUI window. Alt+F4 will also
close the window.

■ Control Frame management. Allows a control frame to be anchored
to the right or left of the screen.

■ Status bar. Allows the status of certain keys to be displayed on the
status bar. For more information, refer to“Status Bar Settings” on
page 8-36.

■ System color on windows. Allows the Microsoft Windows system
settings to determine the colors displayed by an application. For
more information, refer to “System Colors” on page 12-31.

■ Splash screen. Allows a splash screen to be displayed after starting
an application. For more information, refer to “Splash Screen Config-
uration” on page 12-43.

New 4GL Language Features in the 7.3 Release
The following list shows the new 4GL 7.3 language features.

■ DBCENTURY fields. Provides year 2000 support.

■ SQL Grammar extension. Supports 4GL SQL syntax for versions 4.1
to 7.3 (previously only 4.1 was supported).
Introducing Dynamic 4GL 1-13

New 4GL Language Features in the 7.3 Release
■ Syntax cleaning. Provides easier names for many Dynamic 4GL
functions (although old function names will still be supported).

■ New terminate signal. Allows a 4GL application to send a terminate
signal (available only for UNIX).

■ New synonym for the concatenation string operator. Provides
support for the || concatenation string operator.

■ Control INSERT and DELETE operations in INPUT ARRAY. Allows
the INSERT and DELETE keys to be enabled or disabled independent
of each other.

■ New ATTRIBUTE format in INPUT ARRAY. Supports for two new
functions to set attribute formats inside a dialog box.

■ Program-controlled INSERT and DELETE operations. Allows one or
more rows of data to be inserted into the middle of a program array.

■ Program override of INSERT and DELETE operations. Allows
INSERT and DELETE keys to be overridden even if they are enabled.

■ Dynamically configure size of report. Allows the size of the report
page and report destination to be specified when a report starts.

■ Dynamic control of the effective size of a program array (INPUT
ARRAY). Allows the size of the INPUT ARRAY to be dynamically
controlled.

■ Current row highlighted automatically. Allows the current row to
be highlighted without requiring any code changes.

■ Get size of screen array. Declares the size of a named screen array so
that the correct number of values is displayed.

■ COMMENT OFF in windows. Allows a window with a form to be
reduced to one or two (an input and comment line) lines.

For more information, see “New Language Features” on page 5-29 and the
INFORMIX-4GL Reference Manual.
1-14 Informix Dynamic 4GL User Guide

2
Chapter
Installing Dynamic 4GL
In This Chapter . 2-3

Before Installing Dynamic 4GL. 2-3
Upgrading Dynamic 4GL 2-4
Supported Operating Systems. 2-4
Hardware Requirements 2-5

TCP/IP Requirements 2-5
Disk Space Requirements 2-6

C-Compiler Requirements 2-6
Informix Client SDK 2-7
Dynamic 4GL Directory 2-7

Installing Dynamic 4GL on UNIX 2-8
Displaying the Installation Options 2-8
Installing Without a CD 2-9
Installing the Dynamic 4GL Files. 2-10
GLS Installation 2-11
Licensing the Software 2-11

Licensing After 30 Days 2-12
Avoiding Licensing on Reinstall. 2-12

Compiling the Libraries 2-12
Creating the Environment Shell Script 2-13

Preparing to Install Dynamic 4GL on Windows NT. 2-14
C-Compiler Requirement 2-14
Informix Database Server Requirement 2-14
TCP/IP Requirement 2-15
Hardware Prerequisite 2-15
Recommended Windows Client Prerequisite 2-15

2-2 Infor
Installing Dynamic 4GL on Windows NT 2-15
Dynamic 4GL Installation 2-15
Configuring Dynamic 4GL for Windows NT 2-18
Connecting to a Windows NT Database Server 2-19

Post-Installation Tasks 2-21

Installing and Configuring the Ataman Remote Login Service 2-22
mix Dynamic 4GL User Guide

In This Chapter
This chapter describes how to install the Dynamic 4GL development package.
This chapter includes instructions for installing the application server on
either UNIX or Windows NT. For directions on how to install a client
(Windows or X11) and display a Dynamic 4GL application with a GUI, (Java,
HTML, Windows, or X11), refer to the chapters later in this manual.

Before Installing Dynamic 4GL
Before you install the Dynamic 4GL development package, review the
following list. For more information, you can refer to the sections that follow
the list.

■ Dynamic 4GL upgrades. If you are upgrading from a previous
version of Dynamic 4GL, unset any Dynamic 4GL environment
variables before you install the upgrade.

■ Supported operating system. Check to be sure that Dynamic 4GL
supports your operating system.

■ Hardware requirements. Check that your system meets the
minimum hardware requirements. Be sure that your computer has
enough disk space to install Dynamic 4GL and a TCP/IP connection.

■ C-compiler requirements. You must have a compatible C compiler
installed even if you do not plan on compiling to C code. The C
compiler creates the P-code runner. The PATH environment variable
should include the location of the C compiler.

■ Informix Client Software Developer’s Kit. You should have
Informix Client SDK 2.01 (or later) installed if you want to use the
GLS features. You install the Client SDK separately from Dynamic
4GL.
Installing Dynamic 4GL 2-3

Upgrading Dynamic 4GL
■ Dynamic 4GL directory. You should install Dynamic 4GL in its own
directory to make it easier to upgrade or maintain the software.

■ Informix database server. It is recommended that you have the
database server running to check the success of the installation. You
will also need access to the database server to create the P-code
runner.

Upgrading Dynamic 4GL
If you are upgrading your version of Dynamic 4GL, unset the FGLDIR
environment variable (or set it to the new directory.) If you are changing the
installation of the Informix database or the Client SDK, unset the following
environment variables as well:

■ FGLDBS

■ FGLLIBSQL and FGLLIBSYS (if you are compiling to C code)

Supported Operating Systems
You can install Dynamic 4GL on the following operating systems, however,
some operating systems do not support GLS, as the following table illustrates.

Important: For information about any changes to the supported operating systems,
refer to the Dynamic 4GL ReadMe file.

Operating System Version GLS Support

AIX 3.2.5 No

4.2.1 & higher Yes

DG/UX R4.20 & higher (Intel) Yes

HPUX 10.01 & higher Yes

SCO UNIX 3.2.5.0.x (ELF) Yes

Unixware 2.10.x Yes

 7 Yes

 (1 of 2)
2-4 Informix Dynamic 4GL User Guide

Hardware Requirements
Hardware Requirements
Before you install Dynamic 4GL, check that your system meets the following
requirements. A network card is required.

Warning: Changing the network card disables the license information.

TCP/IP Requirements

A development version of TCP/IP must exist on the development server.
Check your operating-system manuals to be sure it is installed as the default.
For example, on SCO UNIX System 3.2, the library libsocket.a must be
present. For Windows NT, use the Microsoft TCP/IP stack.

Digital UNIX (OSF) 4.0 Yes

IRIX 5.3 (o32 format) Yes

6.2 & higher (n32 format) Yes

Reliant UNIX (SINIX) 5.43 & higher Yes

SUN SPARC Solaris 2.5.1 & higher Yes

Intel Solaris 2.6 & higher Yes

Windows NT4 (Intel) Yes

Dynix/Ptx 4.4.2 & higher Yes

Linux kernel 2.0.3 & higher Yes

glibc 2.0.7 & higher Yes

Operating System Version GLS Support

 (2 of 2)
Installing Dynamic 4GL 2-5

C-Compiler Requirements
Disk Space Requirements

The following disk space is required for installation:

■ 15 megabytes of disk space in the /tmp directory (or another
specified directory). This disk space is released after the installation
is complete.

■ 20 megabytes of disk space for the compiler and the Tcl/Tk graphical
display server.

C-Compiler Requirements
You must have an ANSI-compatible C compiler on the development
computer (even if you do not plan on compiling to C code). The C compiler
is used during the installation to create a runner that links the following
libraries:

■ System libraries

■ INFORMIX-ESQL/C libraries (available in the Client SDK)

■ Dynamic 4GL libraries

If you want to use a native C compiler, check that it conforms to ANSI
standards. An ANSI-compatible C compiler must accept the -c flag to produce
object files and the -o flag to produce executable files.

Also, check to be sure that the path to the C compiler is added to the PATH
environment variable setting. If you do not want to use your native C
compiler, install the GNU C compiler delivered with Dynamic 4GL.

Important: You need to create a new runner whenever one of the following compo-
nents changes: your operating system, database interface, or version of Dynamic
4GL.

Be sure that you can compile ESQL/C programs with the ESQL/C compiler. If
you are not using the default C compiler (which is normally cc), make sure
that you set the INFORMIXC environment variable to the compiler you are
using, such as gcc (the GNU C compiler), as well as the documented FGLCC
and CC environment variables, as follows:

INFORMIXC=gcc
export INFORMIXC
2-6 Informix Dynamic 4GL User Guide

Informix Client SDK
If you are using the GNU C compiler (GCC) from the product CD, ensure that
you have both installed GCC before you install the Dynamic 4GL compiler
and set the GCC environment variable correctly with the envgcc script.

For more information about the GCC environment variable, see “GCC
Environment Variables” on page A-7.

Informix Client SDK
To use GLS features, you should have Client SDK 2.01 (or later) installed prior
to installing Dynamic 4GL. If you do not need the GLS libraries, the Client SDK
is recommended but not required.

If you are using an older version of Informix ESQL/C and you are not
planning on using GLS, you should still be able to install Dynamic 4GL and
create the necessary runners. Some features (for example, EXECUTE
IMMEDIATE) are not available in 4.1x ESQL/C but are available in later
versions. If possible, consider using ESQL/C 5.1x, 7.2x or the Client SDK
versions of ESQL/C.

You can download Informix Client SDK from the following Informix Web
site. In addition, the Web site provides installation instructions.

http://www.intraware.com/informix/

Dynamic 4GL Directory
You should install Dynamic 4GL in a separate directory. You will find this
makes upgrading or maintaining Dynamic 4GL easier.

Important: You can install the client display server in the same directory as the
Dynamic 4GL compiler. However, if you expect to install a compiler license and a
runtime license for Dynamic 4GL on the same computer, you should keep the display
server code separate.
Installing Dynamic 4GL 2-7

Installing Dynamic 4GL on UNIX
Installing Dynamic 4GL on UNIX
The following steps start the installation. The Dynamic 4GL installation
program uses Bourne shell scripts. During the installation, you will be
prompted to perform the following steps:

■ If necessary, back up a previous version of Dynamic 4GL.

■ Install all the needed files on your system.

■ Create a default environment for compilation.

■ Install the GLS components.

■ License the compiler (or keep the previous license for an update).

■ Create the P-code runner and needed libraries and tools.

Tip: If you have problems installing Dynamic 4GL, you can perform a manual instal-
lation. For instructions, see “Installing the Dynamic 4GL Software Manually” on
page B-1.

Displaying the Installation Options
Display the Dynamic 4GL online installation directions using the -h flag. For
example, enter the following command:

$ /bin/sh ./sco-dev-2.13.019.sh -h

Installing from the Dynamic 4GL CD
If you have a CD accessible from UNIX, perform the following steps:

1. Log on as user root.

2. Mount the Dynamic 4GL CD.
2-8 Informix Dynamic 4GL User Guide

Installing Without a CD
3. Change to the mount directory.

4. Run the shell script named install.sh with the following command:
$ /bin/sh ./install.sh -i product type

where product type is the package you want to install. The following
table lists the packages available.

If you do not have a /tmp directory or do not have enough space on
your /tmp directory for Dynamic 4GL, you will need to direct the
installation script to another directory using the -w flag. For
example:

$ /bin/sh ./sco-dev-2.13.019.sh -i compiler -w /usr/tmp

Installing Without a CD
If you do not have a CD accessible from UNIX, copy the file located in the
directory /OS/UNIX/your_OS_name/SELFEXTR/ that corresponds to the
package you want to install. For example, the scripts for a Solaris workstation
are:

OS/UNIX/SUN/SELFEXTR/COMPILER.SH
OS/UNIX/SUN/SELFEXTR/RUNTIME.SH
OS/UNIX/SUN/SELFEXTR/GNUC.SH
OS/UNIX/SUN/SELFEXTR/TCLTK.SH

Product Type Description

compiler Installs the development package, including all the
tools needed to compile and execute your 4GL
programs.

runtime Installs a runtime package. The runtime package
allows you to execute previously compiled Dynamic
4GL programs, but it does not allow you to compile
them.

patch Installs a patch over a version

demo Installs the trial package
Installing Dynamic 4GL 2-9

Installing the Dynamic 4GL Files
Then log on, go into the directory where you copied the package, and run the
following command:

$ /bin/sh ./ package .sh -i

Use the scripts as follows to install the various packages:

■ To install the development system, run COMPILER.SH.

■ To install the runtime system, run RUNTIME.SH.

■ To allow use of an X11 client with either the development system or
the runtime system, run TCLTK.SH in addition to the system instal-
lation script.

■ To install the GNU C compiler, run GNUC.SH before installing either
the development system or the runtime system, and set your
environment to point to the location of the compiler.

You need the GNU C compiler only if you do not already have an
ANSI C compiler on your system.

This shell creates all the necessary files and starts the installation process. For
more information, refer to“Post-Installation Tasks” on page 2-21.

Installing the Dynamic 4GL Files
The installation determines the host-operating system and checks that all the
system requirements are met. It then copies the product into a temporary
directory and searches for any existing Informix and Dynamic 4GL products
to set the INFORMIXDIR and FGLDIR environment variables.

If you do not login as superuser, you get a warning that some administrative
operations will be skipped. However, the administrative operations do not
affect the operation of Dynamic 4GL.

You will also be prompted to use the default values. If you might want to
change any of the default values, enter No. For instance, if you want to change
the directory where Dynamic 4GL is installed, you would enter No.
2-10 Informix Dynamic 4GL User Guide

GLS Installation
If you want to overwrite an installed version of the compiler with a new
version, you are prompted for the creation of a backup archive of the existing
compiler.

After these operations, the install shell copies the Dynamic 4GL files to the
specified install directory.

GLS Installation
During the installation, you will be prompted to install Dynamic 4GL in GLS
enhancements. You should only install the GLS enhancement if you are
planning on using the GLS features. The GLS enhancement will install
additional files. For more information on GLS, refer to Appendix D, “Global
Language Support.”

Important: Remember, you must have the Client SDK 2.01 (or later) installed and
the database server running to install the GLS features.

Licensing the Software
After Dynamic 4GL has installed all the application files, you will be
prompted to license the software. To license Dynamic 4GL, you need the
serial number and serial number key supplied with in the Dynamic 4GL
package. You also need access to the Internet and a web browser.

You will be prompted for the serial number provided with the Informix
media. The serial number follows the Informix format—an 11-character
alphanumeric string. Type it and press RETURN, as the following example
shows:

Enter your serial number (e.g., XXX#XAAAAAA) > FJD#D253864

Then enter the 12-character serial number key provided with the Informix
media and press RETURN. After this operation, the installation number is
generated.

Enter your serial number KEY (uppercase letters and numerals) >
QR7CNNANJ8VI
Your installation NUMBER is "EZ0A8MSHEADC (1)".
Installing Dynamic 4GL 2-11

Compiling the Libraries
You then need to display the Informix On-Line Licensing website located at
the following address:

http://www.informix.com/keyissue

Follow the website directions to generate an Installation key to complete the
licensing.

Enter the installation key to complete the licensing and press RETURN.

Do you want to give the installation KEY now (y/n)? y
Enter the installation KEY (call your vendor to obtain it) > 9PF6DKCAUTCU
License installation successful.

Licensing After 30 Days

You have 30 days to enter this key. If you must enter the key at a later date,
use the following command to complete the license installation:

$ licencef4GL -k serial_number_key

Tip: Never use the letter O but always the digit 0 (zero), except for the check
numbers.

Avoiding Licensing on Reinstall

If you reinstall the software, you can avoid entering a new serial number key.
To do this, reinstall the product into the same FGLDIR directory (either physi-
cally or using a logical link).

If you have to change your serial number, you must first uninstall the current
license. To do so, run:

$ fglWrt –d

Compiling the Libraries
If you want to compile to C code or create a custom P-code runner, you need
to install the appropriate libraries.

You will be prompted to create the C-code libraries:

Do you want to create the C code libraries:
Options:([Y]es | [N]o | [C]ancel)
Default:[N]y
2-12 Informix Dynamic 4GL User Guide

Creating the Environment Shell Script
When prompted, answer Yes to begin to create the P-code libraries:

Do you want to create the p-code libraries:
Options:([Y]es | [N]o | [C]ancel)
Default:[Y]y

Dynamic 4GL automatically attempts to link a P-code runner and creates two
script files in the installation directory:

■ envcomp (Bourne shell)

■ envcomp.csh (C shell)

If the P-code runner was not successfully created, it means your system is not
configured correctly. Check that you have the required software installed and
configured. To try to create the P-code runner again, run the following script
file and correct any problems the script reveals:

$ /bin/sh $FGLDIR/bin/findlib.sh

You can continue to run findlib.sh until you have created the P-code runner.

Important: If you do not have INFORMIX-ESQL/C or INFORMIX-4GL (compiled)
currently installed, a version without the database interface (fglnodb runner) is
installed. In this case, you can use this runner to execute a compiled 4GL program
provided it does not contain SQL statements. If you try to execute an SQL statement,
it will generate an error.

Creating the Environment Shell Script
After licensing the software, Dynamic 4GL prompts you to create an
environment file called envcomp. This shell script sets up the main
environment variables required for using Dynamic 4GL.

Do you want to create an environment file?
Options: ([Yes] | [No] | [C]ancel)
Default: [Y]

You should consider adding a call to this shell script in your session startup
file (.login or .profile on most UNIX systems).
Installing Dynamic 4GL 2-13

Preparing to Install Dynamic 4GL on Windows NT
Preparing to Install Dynamic 4GL on Windows NT
Before you install Dynamic 4GL on Windows NT, check that your system
meets the following requirements.

If you are also planning to install an Informix database server on
Windows NT, refer to the Administrator’s Guide for Informix Dynamic Server for
installation and configuration information.

Tip: If you are planning to install Dynamic 4GL, you should install the Dynamic
4GL Windows Client first. For more information on how to install the Windows
Client, refer to “Installing the Windows Client” on page 12-5.

C-Compiler Requirement
The only fully supported C compiler is Microsoft Visual C++ 4.0 or later.
A C compiler is required if you want to call C language functions from 4GL.

Informix Database Server Requirement
You must have at least one version of the ESQL/C development package
installed to create your own P-code runner.

The Dynamic 4GL development packages for Windows NT install two default
runners. One runner does not include an Informix database interface and is
called fglnodb. One of five others is also installed, depending on the version
of the Informix database installed on your computer. This runner is named
fglrun.

If you want to create your own runner, including calls to external C functions,
you will also need a version of the Informix ESQL development package that
is compatible with your Informix database.

Important: Use ESQL/C Version 7.20.TE1 or higher because Version 7.20.TD1 might
cause system instability on Windows NT 4.0. You can also download the latest
Informix Client SDK without charge from the Informix web site. For more infor-
mation, go to www.informix.com and choose Products ➞Connectivity and
Gateways➞Free Download.
2-14 Informix Dynamic 4GL User Guide

TCP/IP Requirement
TCP/IP Requirement
You must install the TCP/IP protocol on computers that will use Dynamic
4GL. Even if you plan to use the product on a stand-alone computer, TCP/IP
features are used.

Important: Only the Microsoft TCP/IP stack is supported. Problems might occur
with other TCP/IP stacks.

Hardware Prerequisite
A network card is required.

Warning: Changing the network card disables the license information.

Recommended Windows Client Prerequisite
You are not required to install the Dynamic 4GL Windows (WTK) client on the
computer before you install the Dynamic 4GL runtime package. However, it
is strongly recommended. The installation software looks for this client and
creates icons that allow you to test if the package is correctly installed.

Installing Dynamic 4GL on Windows NT
This section describes how to install Dynamic 4GL on Windows NT. For
instructions on how to install the Windows client, see “Installing the
Windows Client” on page 12-5.

Dynamic 4GL Installation
An installation program is provided. To perform a manual installation, see
“Post-Installation Tasks” on page 2-21.
Installing Dynamic 4GL 2-15

Dynamic 4GL Installation
To install the development and runtime packages on Windows NT

1. Insert your CD.

This procedure assumes it is on the D drive.

2. Execute the installation program.

For the runtime package enter:
D:\os\nt\runtime\setup.exe

For the development package enter:
D:\os\nt\development\setup.exe

The Installation window appears.

3. Click Continue.

The installation program will look for the Informix database and
ESQL/C version and will localize these products. You can choose
among the following three modes of installation:

❑ Automatic search of an existing Informix version. This option
searches the database registry for all needed information
(database server or INFORMIX-CLI).

❑ Specify the Informix directory. This option prompts for the
specified directory for Informix products (database server or
INFORMIX-CLI).

❑ Informix is not installed. No Informix product has been
installed on your computer (database server or INFORMIX-CLI).

Normally, you will use the automatic search.

4. Click Accept to continue.

Click Refuse to go back if the file path to the Informix product is not
correct.

If any Informix product is found, the installation program displays a
dialog box that says the installation program will install a runner for
the Informix database and a runner for the non-database application.

By default, the installation program installs the package in the
\USR\FGLRC directory (on the disk where the system is installed). If
you want to change the directory where Dynamic 4GL will be
installed, click Browse.
2-16 Informix Dynamic 4GL User Guide

Dynamic 4GL Installation
5. Click Next to start the installation procedure.

At the end of the installation procedure, if no license is installed you
will be prompted to register your license. During the licensing pro-
cedure, do not press ENTER or RETURN. You must use TAB to go from
one field to another.

The INFORMIX License Manager Program dialog box allows you to
install or remove a license, as Figure 2-1 shows.

Tip: You enter license information only once. If you need to reinstall the product, you
do not need to enter the license information again unless you removed the old
%FGLDIR% directory structure.

The serial number and serial number key are provided with the Dynamic 4GL
media. The installation number is generated for you. To access the instal-
lation key, go to the following Web site:

www.informix.com/keyissue.

Figure 2-1
INFORMIX License
Manager Program

Dialog Box
Installing Dynamic 4GL 2-17

Configuring Dynamic 4GL for Windows NT
The serial number follows the standard Informix format—an 11-character
alphanumeric string. The remaining numbers and keys are always built on
the same architecture: twelve uppercase letters and digits followed by an
optional checksum number. In order to avoid any confusion, the letter O is
never used; it is always the digit 0 (zero).

Every field must be completed, with the following exceptions:

■ The Installation Number field is automatically computed and
therefore you do not need to complete it.When you reach that field,
a button should appear, allowing you to license using the Web site
mentioned at the beginning of this section.

■ The Check fields enable you to check that the corresponding serial
number has been entered correctly.

Important: Do not press ENTER to go to the next field. This key validates the OK
button and would therefore cause the license installation to be incomplete. Use TAB

or the mouse.

After licensing, if you have installed the development package, the program
compiles the different P-code libraries needed to compile 4GL to P code. For
the runtime license, this compilation is not needed because you will never
have to compile a program.

Configuring Dynamic 4GL for Windows NT
After installing Dynamic 4GL, you can configure the product. The following
steps show how to setup Dynamic 4GL for a database server. For more infor-
mation on how to configure the database server, see “Configuration Files” on
page 12-37.

1. From the Start menu, choose Programs➞Dynamic 4GL➞Dynamic
4GL Workshop. The command prompt window appears with all
parameters configured for the Administrator account.

You can now make the environment file for the user magellan.

2. Copy the %FGLDIR%\env.bat file to %FGLDIR%\magellan.bat.

In the magellan.bat file, change the following lines:
SET FGLPROFILE=C:\usr\FGL2C\ETC\FGLPROFILE

to
SET FGLPROFILE=C:\usr\FGL2C\ETC\magellan.prf
2-18 Informix Dynamic 4GL User Guide

Connecting to a Windows NT Database Server
3. Save the magellan.bat file.

4. Copy the %FGLDIR%\etc\fglprofile file to
%FGLDIR%\etc\magellan.prf.

Make the sample program testdbs.4gl to test the database connec-
tion, for example:

MAIN
Database testdbs
Display "Status: ", status

END MAIN

5. Compile this program with the following command:
C:\usr\fgl2c fgl2p –o testdbs.42r testdbs.4gl

6. Run the program with the following command:
C:\usr\fgl2c fglrun testdbs.42r

If the database server is started, you will see the following message:
Status:0

This message means that the connection to the database testdbs is
running correctly.

Connecting to a Windows NT Database Server
You need an rlogin service to connect the Informix database server with a
Dynamic 4GL client. Windows NT does not include an rlogin service.
However, you will find several rlogin solutions for Windows NT on the
Dynamic 4GL CD. For the directions for installing and configuring the
Ataman remote login service software, refer to “Installing and Configuring
the Ataman Remote Login Service” on page 2-22.

The Ataman software supplied with Dynamic 4GL is a demonstration version
that you can use for 30 days. If you are interested in using the software after
30 days, you will be required to purchase a licensed version. For more infor-
mation, go to www.ataman.com.
Installing Dynamic 4GL 2-19

Dynamic 4GL Directories
Dynamic 4GL Directories
This section describes the directories created during the installation process.
All the files that the compiler installs are under the directory specified during
the installation and are referenced by the environment variable FGLDIR.
These directories contain the following information.

Name Description

bin The executable files required when you use Dynamic
4GL

bmp The pictures included in your 4GL programs running
on X11 clients (For the other client interfaces, consult
the corresponding section.)

clients The components that support deploying Dynamic
4GL applications on Windows and the Web

defaults Program-specific configuration files

demo The Dynamic 4GL demonstration programs

desi The configuration manager for X11 clients

etc The configuration files and some client resources

etc/ger A filter for the German alphabet character set

etc/iso A filter for the ISO character set

include The f2c directory

include/f2c The include file for C compilation

lib The C libraries needed at link time when you create a
new runner or compile in C code; also contains the
4GL libraries needed when you compile 4GL pro-
grams and modules of some Dynamic 4GL tools

 (1 of 2)
2-20 Informix Dynamic 4GL User Guide

Post-Installation Tasks
Post-Installation Tasks
If you are performing an automatic installation, the following tasks are done
for you. If you are doing a manual installation, you need to complete the
following procedures manually before you can use Dynamic 4GL. For more
information see “Post-Installation Tasks” on page B-3.

■ Find the required libraries: findlib.sh

■ Create the P-code runner and libraries

■ Create the C-code libraries

lock The data files created by clients running compiled
applications (Removing this directory while applica-
tions are running leads to a failure of all the currently
running 4GL programs.)

msg The compiled error and runtime messages handled
by the compiler

release The latest documentation about new features, cor-
rected bugs, and known problems and their
workarounds

src Source files of tools and 4GL libraries (It also contains
the readable form of the error messages contained in
the msg directory.)

toolbars The icons you can include in the toolbars of your
applications

Name Description

 (2 of 2)
Installing Dynamic 4GL 2-21

Installing and Configuring the Ataman Remote Login Service
Installing and Configuring the Ataman Remote
Login Service
The following instructions show how to install and configure the Ataman
Remote Login Service. A 30-day demonstration of this software is included
with Dynamic 4GL.

1. To unzip the Ataman package in the C:\usr\ataman directory,
execute the following command:

C:\usr\ataman atrls install

2. Click the Ataman icon in the Control Panel. The Ataman TCP Remote
Services dialog box appears.

3. Click the Users folder and then click Add User. The dialog box
shown in Figure 2-2 appears.

Figure 2-2
Add User Dialog Box
2-22 Informix Dynamic 4GL User Guide

Installing and Configuring the Ataman Remote Login Service
4. Click the Advanced tab, as Figure 2-3 shows.

5. Remove the asterisk (*) in the List of hosts allowed to connect text
box and click OK.

6. Start the Ataman remote connection by running the following
program at the command prompt:

C:\usr\ataman atrls start

Figure 2-3
Advanced Page
Installing Dynamic 4GL 2-23

Installing and Configuring the Ataman Remote Login Service
7. Before testing the connection, you must check if the following
variable is set in your fglprofile:

fglrun.database.listvar = CC8BITLEVEL COLLCHAR CONRETRY
CONTIME DBANSIWARN DBDATE DBLANG
DBMONEY DBNLS DBPATH DBTEMP DBTIME
DELIMIDENT ESQLMF FET_BUFF_SIZE GL_DATE
GL_DATETIME INFORMIXDIR INFORMIXSERVER
INFORMIXSQLHOSTS LANG LC_COLLATE LC_CTYPE
LC_MONETARY LC_NUMERIC LC_TIME DBALSBC
DBAPICODE DBASCIIBC DBCENTURY DBCODESET
DBCONNECT DBCSCONV DBCSOVERRIDE DBCSWIDTH DBFLTMSK
DBMONEYSCALE DBSS2
DBSS3

8. Change the following in the configuration file magellan.prf:
fglrun.remote.envvar = REMOTEADDRESS

The first two lines of the following code must be uncommented, and
the next two lines must be added:

fglrun.setenv.0 = INFORMIXSERVER=ol_ntserver1
fglrun.setenv.1 = INFORMIXHOST=ntserver1

fglrun.defaultenv.0 = INFORMIXDIR=C:\usr\Informix
fglrun.defaultenv.1 = INFORMIXSQLHOSTS=\\NTSERVER1

9. Save these modifications and then create a connection using Wtk, as
Figure 2-4 shows.

Figure 2-4
Establish Connection

Dialog Box
2-24 Informix Dynamic 4GL User Guide

Installing and Configuring the Ataman Remote Login Service
10. When the connection is made, enter the password.

You will be in the %FGLDIR% directory.

11. Start your environment file magellan.bat.

Now you can run testdbs.42r. This program indicates that your sta-
tus is set to 0, as Figure 2-5 shows, which means that the connection
was successful.

Figure 2-5
4GL-Server
Dialog Box
Installing Dynamic 4GL 2-25

3
Chapter
Basics of Using Dynamic 4GL
In This Chapter . 3-3

Setting the Environment Variables 3-3

Compiling a Simple Program 3-4
Writing the Source Code 3-5
Compiling the Source Code 3-6

Compiling to P Code 3-6
Compiling to C Code 3-7

Compiling the Form-Specification File 3-7
Viewing the Dynamic 4GL Application 3-8

3-2 Infor
mix Dynamic 4GL User Guide

In This Chapter
This chapter explains how to set environment variables and compile a simple
program in Dynamic 4GL.

Setting the Environment Variables
During installation, a file is created that sets the environment for your config-
uration. This file is located in the directory where you installed Dynamic 4GL
and is named envcomp.

The first task is to set up correct environment variables. To do this, execute
the envcomp script located in the $FGLDIR directory. For instance, if the
compiler is installed in the /usr/fgl2c directory, type the following Bourne
shell commands:

$ cd /usr/fgl2c
$. ./envcomp

This script adds the following environment variables.

 Variable Description

FGLDIR The directory specified during the installation for
Dynamic 4GL

INFORMIXDIR The Informix root directory specified during the
installation of Dynamic 4GL

FGLDBS Tells the compiler which version of the Informix
interface you installed on your computer

FGLCC Name of the C compiler you want to use

 (1 of 2)
Basics of Using Dynamic 4GL 3-3

Compiling a Simple Program
Important: This configuration file must have the same name as the 4GL application.

This file is a Bourne shell script. If you are using a UNIX C shell you must
configure the file to work on your system. It is a good idea to include it in
your user configuration files.

Compiling a Simple Program
This section provides a step-by-step procedure to compile a simple 4GL
program with the Dynamic 4GL compiler, which involves these tasks:

■ Writing the 4GL source code

■ Compiling to P code or C code

After you compile the program, you compile the form-specification file.

FGLLIBSQL List of the required Informix SQL libraries

FGLLIBSYS List of the required system libraries

FGLGUI Used only at runtime to specify if the program should be
executed in graphical mode or in ASCII mode

PATH Search path for required files and components. The script
adds the $FGLDIR/bin directory to your PATH

FGLSHELL External shell for linking system tools (CC, GCC), or
Informix tools (ESQL, C4GL) to compile a P-code runner

LD_LIBRARY_PATH Location of shared libraries.

 Variable Description

 (2 of 2)
3-4 Informix Dynamic 4GL User Guide

Writing the Source Code
Writing the Source Code
The first step is to write the 4GL source code for your application. The
following sample program is made of two 4GL modules and one form-
specification file.

The first source code file, ex1-1.4gl:

MAIN
CALL fgl_init4js()
OPEN WINDOW w1 AT 1,1 WITH 24 ROWS, 80 COLUMNS
OPEN FORM frm1 FROM "ex1-1"
DISPLAY FORM frm1
MENU "F4GL"
 COMMAND "Message box"
 CALL message_box()
 COMMAND "Exit"
 EXIT MENU
END MENU
END MAIN

The second 4GL source code file, ex1-2.4gl:

FUNCTION message_box()
DEFINE f01,f02,bt1 CHAR(20)
INPUT BY NAME bt1,f01,f02;
CALL fgl_winmessage(f01,f02,bt1)
END FUNCTION

The form-specification file, ex1-1.per:

DATABASE FORMONLY
SCREEN {

Icon [bt1] Title[01]

Message[f02]

}

ATTRIBUTES
f01 = formonly.f01;
f02 = formonly.f02;
bt1 = formonly.bt1,widget="RADIO", default="info",
 config="info Info exclamation Exclamation question
Question stop Stop";

All the strings between the double quotes are case sensitive.
Basics of Using Dynamic 4GL 3-5

Compiling the Source Code
Compiling the Source Code
The next step is to compile this 4GL source code. You can compile to either
P code or C code.

Compiling to P Code

P code has many advantages over C code. The main advantages of using
P code are:

■ you compile it once and then you can run the same compiled
modules on every computer on which a Dynamic 4GL runtime
package is installed.

■ all the new 4GL features are implemented in P code only.

To compile ex1-1 to P code, change to the directory where you created the
ex1-1.4gl and ex1-1.per files. Check that your environment variable is
correctly set:

$ echo $FGLDIR

This statement should return the directory where you installed Dynamic 4GL.
Also check if the $FGLDIR/bin directory is included in the PATH variable:

$ echo $PATH

Now compile the .4gl source-code files into modules with the .42m extension.
Use the fgl2p script calling the fglcomp program:

$ fgl2p ex1-1.4gl
$ fgl2p ex1-2.4gl

After compiling, you must link the two .42m modules together into a file with
the .42r extension. Use the fgl2p script again, but this time it calls the fgllink
program:

$ fgl2p -o ex1.42r ex1-1.42m ex1-2.42m

The resulting ex1.42r file does not contain any executable code. This file is a
hash table that contains calls to the functions included in the .42m modules.
It is absolutely necessary to keep these modules accessible at runtime.
3-6 Informix Dynamic 4GL User Guide

Compiling the Form-Specification File
Compiling to C Code

You can compile the sample program to C code. However, C code is only
available for UNIX platforms. To compile to C code, use fgl2c instead of fgl2p.

In addition, you need the following: a C compiler, a linker, and two
environment variables (FGLLIBSYS and FGLLIBSQL). These two
environment variables are defined at install time in the envf4gl file located in
the $FGLDIR directory.

Check that they are correctly set:

$ echo $FGLLIBSYS
$ echo $FGLLIBSQL

These two commands should return a list of system libraries and Informix
libraries.

To compile the .4gl source-code files into object files with the .42o extension,
the .4gl files are first compiled into .42c files by the fglcomp program and
then are compiled by your C compiler into .42o object files:

$ fgl2c -c ex1-1.4gl
$ fgl2c -c ex1-2.4gl

In this case, you should use the -c flag.

Next, link the object files, your system libraries, the Dynamic 4GL libraries,
and the Informix libraries together into a single executable file with the .42e
extension:

$ fgl2c -o ex1.42e ex1-1.42o ex1-2.42o

Compiling the Form-Specification File
Form files are compiled with the fglform compiler. Compiled forms can be
used by both P-code and C-code programs. To compile the form-specification
file ex1-1.per, type the following:

$ fglform ex1-1.per

The result of the compilation is a .42f file. In this case, you get the file
ex1-1.42f.
Basics of Using Dynamic 4GL 3-7

Viewing the Dynamic 4GL Application
Viewing the Dynamic 4GL Application
The Dynamic 4GL application can be viewed using a client interface. The
following illustration shows how the application will look when viewed
using the X11 Client. For more information about installing the X11 Client,
and viewing the application, refer to Chapter 13, “Using the X11 Client.”

Figure 3-1
Application Displayed
Using the X11 Client
3-8 Informix Dynamic 4GL User Guide

4
Chapter
Using the Dynamic 4GL
Compiler
In This Chapter . 4-3

Setting Environment Variables for the Compiler 4-3

Compiling Form-Specification Files and Help Message Files 4-4
Compiling Form-Specification Files 4-4
Compiling Help Message Files 4-5

Generating a Database Schema File 4-5

Compiling to P Code 4-6
Overview of a P-Code Example 4-6

Compiling Source Files to Linkable Modules 4-7
Linking Modules Together to Create P Code 4-7

Using C Functions in 4GL Applications 4-8
Compatibility Problems with C 4-8
Linking C Functions with the P-Code Runner 4-8
Examples 4-12

Compiling to C Code 4-19
Overview of a C-Code Example 4-19

Compiling Source Files to Linkable Modules 4-20
Linking Modules to Create C-Code Libraries 4-21

Using C Functions in 4GL Applications 4-21
Linking C Functions for Use in C-Code Compilations 4-21

Compilation Tools 4-26
Main Compilation Tools 4-27
Other Compilation Tools 4-27
Configuration Tools 4-28
Miscellaneous Programs and Scripts 4-28

4-2 Infor
mix Dynamic 4GL User Guide

In This Chapter
This chapter contains all the needed syntax for compiling 4GL programs into
Dynamic 4GL programs using P code or C code. It also explains how to add
calls from 4GL programs to C programs and how to make calls from C
programs to 4GL programs.

This chapter covers the following topics:

■ Setting environment variables for the compiler

■ Compiling 4GL form specification files and help message files

■ Generating a database schema file

■ Compiling to P code

■ Compiling to C code

■ Creating a P-code runner with fglmkrun

■ Compilation tools

Setting Environment Variables for the Compiler
The first task is to set up correct environment variables. To do this, execute
the envcomp script located in the $FGLDIR directory. This shell script was
created during installation and it sets up the main environment variables
required to use Dynamic 4GL.

For instance, if the compiler is installed in the /usr/fgl2c directory, type the
following Bourne shell commands:

$ cd /usr/fgl2c
$. ./envcomp

Important: You should include a call to this shell script in your session startup file
(.login or .profile on most UNIX platforms).
Using the Dynamic 4GL Compiler 4-3

Compiling Form-Specification Files and Help Message Files
You can control the behavior of the Dynamic 4GL compiler with configu-
ration files. For more information, see Chapter 8, “Configuring the Dynamic
4GL Compiler.”

Compiling Form-Specification Files and Help
Message Files
This section describes how to compile the form-specification files and help
message files that your 4GL applications use.

Compiling Form-Specification Files
You need to recompile 4GL forms into a Dynamic 4GL format. The compiled
form files can be used with applications compiled to either P code or C code.

The tool to compile forms is fglform. The extension of the compiled .per files
is .42f. The compilation syntax is as follows:

$ fglform formname {.per}

This command compiles the form-specification file named formname.per
into formname.42f. The .per extension is not mandatory on the command
line.

Important: Because you might need to recompile forms on a computer other than
your development computer, the fglform compiler is installed with the Dynamic 4GL
runtime package.
4-4 Informix Dynamic 4GL User Guide

Compiling Help Message Files
Compiling Help Message Files
You need to recompile the 4GL help message files into a Dynamic 4GL format.
The help message compiler, named fglmkmsg, is similar to the Informix
mkmessage compiler. The compilation syntax is as follows:

$ fglmkmsg input_file output_file

The following command decompiles the file and the output is written to the
standard output:

$ fglmkmsg -r compiled_file

Generating a Database Schema File
You need to generate a database schema file. Run the following command in
a directory and environment where you have access to your database (for
instance, you should be able to access the database with the Informix tools
INFORMIX-SQL and DB-Access):

$ fglschema database_name

The file database_name.sch is generated. If needed, two other files are
generated: databasename.att and databasename.val. These files manage the
syscolatt and syscolval tables (respectively).

The environment variable FGLDBPATH must include the path to the
directory that contains this database schema file. This environment variable
allows you to compile 4GL programs that reference the database.

Important: While no changes are required to the database before using Dynamic 4GL,
a schema file must be generated each time that the database structure changes.
Using the Dynamic 4GL Compiler 4-5

Compiling to P Code
Compiling to P Code
This section describes how to compile a sample 4GL program to linkable
modules and how to link those modules together to create an executable
program. It also describes how to use C functions in your applications.

P code is hardware-independent pseudo-executable code. The same P code
can be executed on any operating system on which Dynamic 4GL is installed.
Furthermore, P code allows you to use many of the improvements added to
4GL that are not available for use with C code.

Overview of a P-Code Example
In this section, you will compile the following 4GL program named
example.4gl:

MAIN
DISPLAY "Hello World"
END MAIN

Before executing this program, you need to compile the code and then link
the needed modules and the P-code runner. Figure 4-1 shows the complete
compilation schema.

The name of the Dynamic 4GL P-code compiler is fgl2p. This tool compiles
4GL source code into P-code executables or libraries.

Figure 4-1
P-Code

Compilation
Schema

4GL
Source fgl2p -c P-code module

4GL
Source fgl2p -c P-code module

4GL
Source fgl2p -c P-code module

fgl2p -o
+

P-code
runner

Main p-code module
+

P-code modules

C
Source P-code runnerfglmkrun
4-6 Informix Dynamic 4GL User Guide

Overview of a P-Code Example
Compiling Source Files to Linkable Modules

By convention, the following extensions are used for filenames:

■ .4gl for the source-code files

■ .42m for the compiled modules

■ .42r for the file resulting from the linking of compiled modules

The syntax for the first step of the compilation, compiling 4GL source code
into linkable modules is:

$ fgl2p 4gl_source_code .4gl

For example:

$ fgl2p example.4gl

This line compiles the 4GL source-code file example.4gl to the module
example.42m.

Linking Modules Together to Create P Code

The following syntax links the compiled .42m modules together to create an
executable or library. This link also checks for C functions included in the
runner (see“Linking C Functions with the P-Code Runner” on page 4-8) that
the FGLRUN environment variable specified.

$ fgl2p –o executable.42r module1.42m [module2.42m] …

This line links the compiled modules module1.42m and module2.42m into
the executable.42r. The following line links the compiled modules
module1.42m and module2.42m into the library library.42x:

$ fgl2p –o library.42x module1.42m [module2.42m] …

This library can be used as an object module file when linking applications
that use calls to functions defined in the library.

At runtime, all modules linked together must be located in a directory
specified by the FGLLDPATH environment variable.
Using the Dynamic 4GL Compiler 4-7

Using C Functions in 4GL Applications
The .42m modules are linked together into the .42r hash table that contains
cross-references to all functions and variables used in the 4GL application.
Thus, all unresolved or faulty references (for instance, missing functions, or
function calls with an incorrect number of parameters or return values) are
detected at link time instead of at runtime.

At runtime, only the .42r and .42m modules that contain the MAIN section are
loaded into memory. All other .42m modules are loaded when needed. Every
module and all library modules appear only once in the application. This can
lead to a significant reduction in the size of the P-code modules constructing
the application.

Using C Functions in 4GL Applications
This section describes a strategy for using C functions in your application.

Compatibility Problems with C

Using C functions in your 4GL applications can cause problems when you
port the application to a platform other than the one used to develop it. For
example, you can expect problems when porting an application from UNIX
to Windows NT and vice versa. Problems can also occur when you use too
many specific calls to system features.

In both cases, try to reduce calls to C functions and system commands to
reduce the risk of problems when porting to other platforms.

Dynamic 4GL contains extra functions and features that allow you to avoid
calls to most of the C functions and calls to system features. For a description
of the new extensions to the 4GL language, see Chapter 6, “Using Form Exten-
sions to 4GL.”

Linking C Functions with the P-Code Runner

Because the low-level instruction set is defined in the P-code runner, and
because C functions have only a low-level implementation (that is, they do
not change the 4GL syntax), they must be linked with the runner at its
creation.
4-8 Informix Dynamic 4GL User Guide

Using C Functions in 4GL Applications
To use C functions in a 4GL program, you must:

■ define the C functions in a C-extension file.

■ compile your C files and the C-extension file.

■ build the runner with the C files.

The fglmkrun shell script allows you to generate a specific runner with C
function. For more information, you can view the output of fglmkrun. You
can also use different flags and options with fglmkrun.

Viewing Sample fglmkrun Output

You can see what was done during fglmkrun execution. The output displays
the following information:

■ The name and location of the created P-code runner

■ The compiler/linker used by the script to build the P-code runner
(for example, esql, gcc, cc, c4gl, and so on)

■ The list of the additional flags and libraries added to the command
line

■ The current value of $INFORMIXDIR

■ The version of Informix database interface for which the runner is
created:

❑ ix410 for 4.10 Informix interfaces

❑ ix501 for Informix interfaces from 5.01 to 6.X

❑ ix711 for Informix interfaces 7.X

❑ ix914 for Informix database interfaces 9.13 or greater

❑ ixgen for all Informix database interfaces but requires the compi-
lation of an ESQL/C source file ($FGLDIR/src/esql_gen.ec). In
this case the only compiler that can be used for creating the
runner is esql.

■ The memory mapping used is the system built-in or an emulation.
For information on memory mapping see “Memory Mapping
Settings” on page 8-37.

■ The list of all files added to the compiler

In most instances, these are C-function source files called from the
4GL source code.
Using the Dynamic 4GL Compiler 4-9

Using C Functions in 4GL Applications
To view the P-code runner output, execute fglmkrun. The following infor-
mation appears:

The runner was successfully linked with the following options:
Runner name : /usr/fgl2c/bin/fglrun
Language Support Library : ASCII
Compiler : esql
Additional flags/libs : None
Informix dir : /informix
Database interface : ix914 (/usr/fgl2c/lib/libix914.a)
Memory mapping : System built in
User extensions : None

Important: Be sure that the environment is correct before executing fglmkrun. If
necessary, run the findlib.sh shell script and use the resulting shell script.

Building a Statically Linked Runner

To build a statically linked P-code runner named myrun using the Client
SDK, Version 2.10, and a C-function file name file.c (assuming the prototype
of these functions are defined in the file $FGLDIR/lib/fglExt.c), execute
fglmkrun with the following command:

$ fglmkrun -d ix914 -add -static $FGLDIR/lib/fglExt.c file.c -o myrun

The following output appears:

The runner was successfully linked with the following options:
Runner name : myrun
Language support library: ASCII
Compiler : esql
Additional flags/libs : -static
Informix dir : /ix/informix.csdk
Database interface : ix914 (/work/pl/fgl2c/lib/libix914.a)
Memory mapping : System built in
User extensions : Yes
/work/pl/fgl2c/lib/fglExt.c
file.c
4-10 Informix Dynamic 4GL User Guide

Using C Functions in 4GL Applications
Details About fglmkrun

You can use the following options when executing fglmkrun:

Syntax fglmkrun options [ext]

Options

 -V Display fglmkrun version information.

 -h Display help message with a list of fglmkrun options.

 -vb Verbose mode displays the compilation line used and fglmkrun
output.

-o name Output to name, default=fglrun. This symbolic link is to the
default runner created either in the $FGLDIR/bin/gls directory if
the flag -gls is set and in $FGLDIR/bin/ascii if it is not set.

-d dbver Database interface version, default=ix410

■ ix410 : Informix 4.10

■ ix501 : Informix 5.01

■ ix711 : Informix 7.11

■ ix914 : Informix 9.1x and higher

■ ixgen : Generic Informix 9.1x and higher

-sh prog External shell for linking (esql, c4gl, and so on). The fglmkrun
script can use the system tools (cc, gcc) or Informix tools (esql,
c4gl) to compile a P-code runner. For system tools, the required
Informix libraries and system libraries have to be set with the
findlib.sh script. For Informix tools, the Informix tools automati-
cally find the libraries. Default value is CC.

 -add "other" Add other system libraries or flags to link. The -add flag sends the
specified parameter to the compiler building the runner. The
argument will not be interpreted by the fglmkrun script.

ext List of user extension modules. This can be anything else that is to
be compiled and linked with the runner such as libraries, C files,
object files, and so forth.

 -gls Set this option is you want to use the GLS language support
library. To create a runner with GLS support, you need the Client
SDK 2.01 (or later) database interface. If the -gls flag is not
specified, a runner handling only the ASCII charset is created.
Using the Dynamic 4GL Compiler 4-11

Using C Functions in 4GL Applications
For a list of fglmkrun error messages, see “fglmkrun Errors” on page -34 of
Appendix C.

You must specify the -d ix711 option if programs are to run with Informix 7.x
database servers. Alternatively, you can set the environment variable
FGLDBS to ix711.

Examples

The following example shows the standard extension file
$FGLDIR/lib/fglExt.c:

#include "f2c/fglExt.h"
UsrData usrData[]={
{ 0, 0 }
};
UsrFunction usrFunctions[]={
{0,0,0,0 }
};

The two arrays usrData and usrFunctions must always be present in the file.
The last record of each array should be a line with all the elements set to 0.
The usrData array contains the name of the global variables modified by
your C programs, and usrFunctions contains the name of the C functions
called from the 4GL modules.

You can copy the file $FGLDIR/lib/fglExt.c and adapt it to your own needs.
For example:

#include "f2c/fglExt.h"
#include "f2c/r_c.h"
int my_func1_cname(int nargs);
int my_func2_cname(int nargs);
UsrFunction usrFunctions[]={

{ " my_func1_4glname ", my_func1_cname , my_func1_nbparam , my_func1_nbret },
{ " my_func2_4glname ", my_func2_cname , my_func2_nbparam , my_func2_nbret },
{ 0,0,0,0 }

};
4-12 Informix Dynamic 4GL User Guide

Using C Functions in 4GL Applications
The following table describes the elements in this example.

This first example is a simple call to a C function in a 4GL module.

First create your C file (examplec.c):

#include <stdio.h>
int fncc1(int n)
{
 printf ("This a C file.");
 return 0;
}

Compile it with your C compiler:

$ cc -c example.c

Before any modification, copy fglExt.c into your working directory to make
it available for all users. Then edit fglExt.c and update it with the following
definitions:

#include "f2c/fglExt.h"
UsrData usrData[]={
{ 0, 0 }
};
int fncc1(int n);
UsrFunction usrFunctions[]={
{"fncc1",fncc1,0,0},
{0,0,0,0 }
};

Now build the new runner with the following command:

$ fglmkrun -o newrunner example.o fglExt.c

This command builds a runner (the link between the Informix libraries,
system libraries, Dynamic 4GL libraries, and the file example.o) named
newrunner. This runner is for 4.x Informix databases.

Element Description

my_func1_4glname Function name in the 4GL program

my_func1_cname Function name in the C module

my_func1_nbparam Number of parameters (-1 means variable)

my_func1_nbret Number of return values (-1 means variable)
Using the Dynamic 4GL Compiler 4-13

Using C Functions in 4GL Applications
Do not give your new runner the same name as one of the files located in the
current directory. When you have created the new runner, you can create the
4GL example (example.4gl) with the following lines:

MAIN
CALL fncc1()
END MAIN

Compile the .4gl file with the following command:

$ fgl2p –c example.42m example.4gl

And link your object file example.42m to example.42r with the following
commands:

$ FGLRUN=newrunner
$ export FGLRUN
$ fgl2p -o example.42r example.42m

The shell script fgl2p uses the value of the FGLRUN environment variable to
determine which runner to link with. If you do not set the FGLRUN
environment variable before you link your 4GL program, the compiler will
generate an error because the fncc1 function was undefined.

Now you can execute your P-code executable with the following command:

$ newrunner example.42r

Calling 4GL from C

Building on what you know about calling a C function from a 4GL module,
you can call 4GL from a C function. Use the fCall function in your C
programs, as follows:

fCall(" funcname ", nbparam)

where funcname is the name of the 4GL function to call (CHAR), and nbparam
is the number of parameters (INTEGER). This function returns the number of
return values (INTEGER).
4-14 Informix Dynamic 4GL User Guide

Using C Functions in 4GL Applications
The parameters must be pushed on the stack before the call, and the return
values must be popped from the stack after returning. The 4GL function must
be declared external in the C-extension file. Update the C file with the
following statements:

#include <stdio.h>
#include "f2c/fglExt.h"
int fncc1(int n)
{
fCall("fnc2",0);
return 0;
}

Compile these statements using the following command:

$ cc -c example.c -I$FGLDIR/include

Now update file fglMyExt.c:

#include "f2c/fglExt.h"
UsrData usrData[]={
{ 0, 0 }
};
extern int fnc1(int n);
UsrFunction usrFunctions[]={
{"fnc1", fnc1, 0,0 },
{0,0,0,0 }
};

Then build the new runner with the following command line:

$ fglmkrun -o newrunner example.o fglMyExt.c

Then update the 4GL example:

MAIN
CALL fncc1()
END MAIN
FUNCTION fnc2()
DISPLAY "You are in 4gl function"
END FUNCTION

Compile it with fgl2p:

$ FGLRUN=newrunner
$ export FGLRUN
$ fgl2p –c example.42m example.4gl
$ fgl2p –o example.42r example.42m

Now you can run it with the new runner:

$ newrunner example.42r
Using the Dynamic 4GL Compiler 4-15

Using C Functions in 4GL Applications
Modifying 4GL Global Variables From C Functions

The last step is to modify 4GL global variables in C functions. Every variable
must be defined in the C file as well as in the C-extension file used to build
the specific runner. The C-extension file also contains the definitions of the C
functions.

The global 4GL variables are internally redefined, so you have to use the
CNAME macro to reference them in your C files that contain your C functions.

Furthermore, every variable must be defined as external to the C module
with its corresponding type. Use the following syntax:

#define variable_name_in_4gl CNAME(variable_name_in_4gl)

where variable_name_in_4gl is the name of the variable in 4GL.

The following example shows a file that contains the C functions called from
4GL:

#include <stdio.h>
#include "f2c/fglExt.h"
#define var CNAME(var)
#define res CNAME(res)
extern int var;
extern char res[101];
int fncc1(int n)
{
printf("%s %d\n", res, var);
return 0;
}

Compile the C file with the following command:

$ cc -c example.o -I$FGLDIR/include

Now modify the file fglMyExt.c. Use the GLOB_type macro to create the
relationship between the name of the global variable in C and the one in 4GL:

GLOB_type (varname [, varlength]);
4-16 Informix Dynamic 4GL User Guide

Using C Functions in 4GL Applications
The following table describes the elements of this command.

The code is:

#include "f2c/fglExt.h"
GLOB_CHAR(res,100);
GLOB_INT(var);

UsrData usrData[]={
GLOB(var),
GLOB(res),
 { 0, 0 }
};
int fnc1(int n);
UsrFunction usrFunctions[]={
{ "fnc1",fnc1,0,0 },
 {0,0,0,0 }
};

Create the new runner:

$ fglmkrun -o newrunner example.o fglExt.c

The following table shows the supported data types.

Element Description

type The type of the variable

varname Name of the variable as defined in 4GL

varlength Length of the variable as defined in 4GL (only for CHAR variables)

CHAR GLOB_CHAR

GLOB_VARCHAR

SMALLINT GLOB_SMALLINT

INTEGER GLOB_INT

SMALLFLOAT GLOB_SMALLFLOAT

FLOAT GLOB_FLOAT

 (1 of 2)
Using the Dynamic 4GL Compiler 4-17

Using C Functions in 4GL Applications
The list of supported data types can also be found in the file
$FGLDIR/include/f2c/fglExt.h.

Global RECORD and ARRAY statements are not allowed.

Adapt your 4GL example as follows:

GLOBALS
DEFINE var INTEGER,

res CHAR(100)
END GLOBALS
MAIN
LET var = 15
LET res = "The result is "
CALL fncc1()
END MAIN

Compile it with fgl2p and run it with the new runner:

$ fgl2p -o example.42r example.4gl
$ newrunner example.42r

Building a Runner on SCO Systems

With SCO systems, the use of fglmkrun during a manual installation causes
the following error message:

Symbol not found fileno
First referenced in file.../lib/libf2c.a

This problem arises because of differences between the various versions of
the SCO libraries. The solution to this problem is to create a file named
fileno.c that contains the following lines:

#include <stdio.h>
#undef fileno
int fileno(f)
FILE *f ;
{
 return(f->__file) ;
}

DECIMAL GLOB_DECIMAL

MONEY GLOB_MONEY

DATE GLOB_DATE

 (2 of 2)
4-18 Informix Dynamic 4GL User Guide

Compiling to C Code
Then execute fglmkrun with fileno.c as an additional parameter (for
Informix 5.x):

$ fglmkrun -o fglrun fileno.c $FGLDIR/lib/fglExt.c

Compiling to C Code
While Dynamic 4GL allows you to compile 4GL programs to C code, consider
compiling to P code rather than C code. With C-code compilation, you must
recompile the whole program whenever you change the execution platform,
whereas with P code, you only need to rebuild your runner. In addition,
P code does not execute significantly slower than C code.

Overview of a C-Code Example
In this section, you compile the following 4GL program named example.4gl
to C code:

MAIN
DISPLAY "Hello World"
END MAIN
Using the Dynamic 4GL Compiler 4-19

Overview of a C-Code Example
Before you execute this program, you first need to compile it and then link all
the needed modules. Figure 4-2 shows the complete compilation schema.

The name of the Dynamic 4GL C-code compiler is fgl2c. This tool compiles
the 4GL source code into C-code executables or into libraries.

Compiling Source Files to Linkable Modules

The following conventions are used for the filename extensions:

■ .4gl for the source-code files

■ .42o for the compiled modules

■ .42e for the file resulting from the linking of compiled modules,
system libraries, and P-code libraries

The following syntax is the first step of the compilation, which compiles 4GL
source code into linkable modules:

$ fgl2c –c 4gl_source_code .4gl

For example:

$ fgl2c –c example.4gl

Figure 4-2
C-Code

Compilation
Schema

4GL
Source fgl2c -c C code module

4GL
Source fgl2c -c C code module

4GL
Source fgl2c -c C code module

fgl2c -o Executable

C
Source C object files$FGLCC -c

System Libraries
+

Informix Libraries
4-20 Informix Dynamic 4GL User Guide

Using C Functions in 4GL Applications
This line compiles the 4GL source-code file example.4gl to the module
example.42o.

Linking Modules to Create C-Code Libraries

The following syntax links the compiled .42o modules together to create the
executable:

$ fgl2c –o executable.42e module1.42o [module2.42o] …

This line links the compiled modules module1.42o and module2.42o into the
executable.42e.

The procedure to create C-code libraries is a little different from that for
creating P-code libraries. To build the C-code libraries, you must use the
ar42o tool. The syntax of ar42o is:

$ ar42o libname.a module1.42o [module2.42o] …

This line uses the UNIX ar command to create the library named libname.a
made of the compiled modules module1.42o and module2.42o. This library
can be used as an object module file when linking applications that use calls
to functions defined in the library. For more information on ar, read the ar
man page on your UNIX system.

Using C Functions in 4GL Applications
This section describes a strategy for using C functions in your applications
and gives you a step-by-step example.

Linking C Functions for Use in C-Code Compilations

With C code, the C functions are linked in the same manner as any other
modules during the application link phase. You just have to follow a few
rules to successfully call C functions from 4GL applications and vice versa.
Using the Dynamic 4GL Compiler 4-21

Using C Functions in 4GL Applications
With C code, in order to call a C function from a 4GL application, you do not
need a C-extension file to create the relationship between the name of the C
function and the name of the 4GL function. But you have to call a macro
named CFACE defined in the f2c/r_c.h header file. You will also have to
include the f2c/r_c.h header file at the beginning of your C files. Use the
following syntax to call the macro:

CFACE (C_function_name ,
parameters_number ,
returned_values_number)

The following table describes the elements of this command.

Use this macro for all C functions called from 4GL applications. Include the
f2c/r_c.h header file in all the C files that call this macro.

If you want to use the same source files to compile your applications, either
with Dynamic 4GL or with the 4GL compilers, use conditional compiling, as
in the following example:

#ifdef Informix
#include "f2c/r_c.h"
#endif

The following example shows a 4GL application that calls a C function named
mainc. The 4GL source-code file is named exCCode.4gl and contains the
following code:

MAIN
CALL mainc()
END MAIN

Element Description

C_function_name Name of the C function

parameters_number Number of parameters transmitted to the function

returned_values_number Number of values returned by the function
4-22 Informix Dynamic 4GL User Guide

Using C Functions in 4GL Applications
The C source file is named exc.c and contains the following code:

#ifdef Informix
#include "f2c/r_c.h"/* This is the Informix header file defining the CFACE
macro */
#endif
#include <stdio.h>
int mainc(int n)
{
printf ("hello from C !!");
return 0;
}
CFACE(mainc,0,0) /* Macro needed for every function call from 4GL */

Now compile the two previous files with the following commands:

$ cc –c exc.o exc.c –D Informix –I$FGLDIR/include
$ fgl2c –c exCCode.42o exCCode.4gl

Next, link the compiled modules, the system libraries, and the Informix
development libraries together with the fgl2c shell script:

$ fgl2c –o exc.42e exc.o exCCode.42o

To call 4GL functions from a C function, use the FGLCALL macro in your C
functions. This function is also defined in the f2c/r_c.h Dynamic 4GL header
file. The syntax is as follows:

FGLCALL(4GL_function_name ,
parameters_number ,
returned_values_number)

The following table describes the elements of this command.

The following example shows a 4GL function that calls a C function, which,
in turn, calls another 4GL function. This example is made of two 4GL modules
and one C file.

Element Description

4GL_function_name Name of the 4GL function

parameters_number Number of parameters transmitted to the function

returned_values_number Number of values returned by the function
Using the Dynamic 4GL Compiler 4-23

Using C Functions in 4GL Applications
The first 4GL module is exCCode.4gl:

MAIN
DEFINE word CHAR(60)
OPEN WINDOW w1 AT 1,1 WITH 20 ROWS, 50 COLUMNS ATTRIBUTES(BORDER)
LET word = "How are you?"
CALL mainc(word)
SLEEP 3
CLOSE WINDOW w1
END MAIN

The second 4GL module is fnCCode.4gl:

FUNCTION fncc1(word)
DEFINE word CHAR(60)
IF word = "How are you?" THEN
 DISPLAY "Very fine and you?" AT 10, 1
END IF
END FUNCTION

The C file is exc.c:

#ifdef Informix
#include "f2c/r_c.h"
#endif
#include <stdio.h>
int mainc (int n)
{
CHAR word[13];
popquote(word, 13);
pushquote(word, 13);
FGLCALL(fncc1, 1, 0);
return 0;
}
CFACE(mainc, 1, 0)

The C statements popquote, pushquote, pop[…] and push[…] are working
exactly as with INFORMIX-4GL compilers.

Next, compile these three files:

$ cc –c exc.o exc.c –D Informix –I$FGLDIR/include
$ fgl2c –c exCCode.4gl
$ fgl2c –c fnCCode.4gl

Link the three object modules, the system libraries, and the Informix libraries
together:

$ fgl2c –o exCCode.42e exCCode.42o fnCCode.42o exc.o

Run the example by typing:

$ exCCode.42e
4-24 Informix Dynamic 4GL User Guide

Using C Functions in 4GL Applications
The next step is to share global variables between C functions and 4GL
functions. The definition process for global variables is exactly the same as
when you compile your program in C code or in P code, except that no
C-extension file is needed. The syntax of the CNAME macro is:

#define variable_name_in_4gl CNAME(variable_name_in_4gl

where variable_name_in_4gl is the name of the variable in 4GL.

To illustrate this macro with C-code compilation, you simply modify the
previous example to use a global variable instead of a parameter to exchange
the data between the 4GL functions and the C function.

The first new 4GL module is exCCode.4gl:

GLOBALS
DEFINE word CHAR(12)
END GLOBALS
MAIN
OPEN WINDOW w1 AT 1,1 WITH 20 ROWS, 50 COLUMNS ATTRIBUTES(BORDER)
LET word = "How are you?"
CALL mainc()
SLEEP 3
CLOSE WINDOW w1
END MAIN

The second one is fnCCode.4gl:

GLOBALS
DEFINE word CHAR(12)
END GLOBALS
FUNCTION fncc1()
IF word = "How are you?" THEN
 DISPLAY "Very fine and you?" AT 10, 1
END IF
END FUNCTION
Using the Dynamic 4GL Compiler 4-25

Compilation Tools
The new C function is exc.c:

#ifdef Informix
#include "f2c/r_c.h"
#define word CNAME(word) /* here is the variable declaration in the C file
*/
#endif
#include <stdio.h>
extern char word[13]; /*here is the prototype of the variable in the C
file */
int mainc(int n)
{
printf("%s\n", word);
FGLCALL(fncc1, 0, 0);
return 0;
}
CFACE(mainc, 0, 0)

Now compile these three files:

$ cc –c exc.o exc.c –D Informix –I$FGLDIR/include
$ fgl2c –c exCCode.4gl
$ fgl2c –c fnCCode.4gl

Next, link the three object modules, the system libraries, and the Informix
libraries together:

$ fgl2c –o exCCode.42e exCCode.42o fnCCode.42o exc.o

Compilation Tools
All the tools you need in order to compile 4GL programs to P code or C code
are located in the /bin subdirectory. These tools are described in the following
sections.
4-26 Informix Dynamic 4GL User Guide

Main Compilation Tools
Main Compilation Tools
The following table lists the programs you will most often use to compile
applications.

Other Compilation Tools
Use the following scripts to create archives and locate libraries.

Filename Description

fgl2p Script to compile applications to P code

fgl2c Script to compile applications to C code

fglcomp Main compiler program

fgllink Main linking program

fglform Tool for compiling form specification files (.per)

fglschema Script to create a schema of your databases used by the 4GL
compiler at compile time

fglmkrun Script to create a new P-code runner

fglnodb The default P-code runner without any database interfaces

fglrun The P-code runner created during the installation process,
including your Informix interface

Filename Description

ar42o Script to create archive files from .42o object files

findlib.sh Script to find all the libraries needed on your system to create
P-code runners or C-code executables
Using the Dynamic 4GL Compiler 4-27

Configuration Tools
Configuration Tools
The following table lists tools that aid in configuration.

Miscellaneous Programs and Scripts
This table lists other helpful tools.

Filename Description

fglmkmsg Tool to create the runtime error message libraries

licencef4gl Script to install a license

confdesi Script to start the configuration program for the X11 interface

fglfontsel Font selection tool for X11 interfaces (P-code version)

fglfontsel.42e Font selection tool for X11 interfaces (C-code version)

Filename Description

rtsinstall Script to create the P-code libraries and to compile the Dynamic 4GL
tools to P code

fglinstall Script to create the C-code libraries and to compile the Dynamic 4GL
tools to C code

fglpager Script to start the graphical editor used to display reports (P-code
version)

pager.42e Graphical editor used to display reports (C-code version)

install.sh Script used during the installation of packages and patches

fglX11d Graphical daemon for the X11 interfaces

fglWrt Main license program
4-28 Informix Dynamic 4GL User Guide

5
Chapter
Using Non-Graphical
Extensions to 4GL
In This Chapter . 5-3

Channel Extensions 5-3
Initializing Channel Extensions 5-4
Opening a File 5-4
Opening a Pipe 5-5
Setting the Default Separator 5-6
Reading Data from an Opened Channel 5-6
Writing Data to a Pipe or Stream 5-7

Closing the Channel 5-8
Channel Error Codes 5-8

Sharing Information Using DDE 5-8
Supported Windows Applications 5-9
Using DDE Extensions 5-9
Transmitting Values to a Windows Program 5-11
Getting Values from a Windows Program. 5-12
Closing a DDE Connection 5-13
Closing all DDE Connections 5-13

Extending the DISPLAY ARRAY Statement 5-14

Returning Key Code Values 5-15
Returning Key Codes from P Code 5-16
Returning Key Codes from C Functions 5-18
Creating a Custom Character Filter 5-18

5-2 Infor
Starting a UNIX Emulator 5-19

Starting Windows Applications 5-20

Using Input Statement Functions 5-21
Returning a Value if a Field has been Modified 5-21
Returning the Name of a Field. 5-23
Returning the Value of a Field 5-23
Setting the Value in a Field 5-23
Displaying a Row at a Given Line in a Screen Array 5-24
Returning the Position of the Cursor 5-27

Setting the Cursor Position 5-28

Terminating Applications. 5-29

New Language Features 5-29
Enhanced SQL Syntax Support 5-30

Support For Embedded SQL 7.3 Syntax 5-30
Support for Preparable SQL Statements 5-31

Syntax for Expansion of Abbreviated Year Values 5-34
Legacy Support for DBCENTURY 5-35
New CENTURY Field Attribute 5-36
New CENTURY Display Attribute in PROMPT Statements . . 5-37

Enhanced Syntax for Screen Array Management 5-38
Data Editing in Screen Arrays 5-38
New CURRENT ROW DISPLAY Attribute 5-41
New COUNT Attribute. 5-43
New MAXCOUNT Attribute 5-43
New FGL_SCR_SIZE() Built-In Function 5-44

Dynamic Configuration of Report Output. 5-46
New Built-In Operators 5-48

String Concatenation Operator 5-48
Synonym for the Equality (=) Relational Operator 5-49

New Syntax to Hide the Comment Line 5-50
Editing Multibyte Data in 4GL Forms 5-51
New Conditional Comments 5-53
mix Dynamic 4GL User Guide

In This Chapter
This chapter describes nongraphical extensions (extensions that do not affect
the database interface) that can be used to enhance Dynamic 4GL applica-
tions. This chapter includes the following sections:

■ Channel extensions

■ Sharing information using Dynamic Data Exchange (DDE)

■ Extending the DISPLAY ARRAY command

■ Returning key code values

■ Starting a UNIX emulator

■ Starting Windows applications

■ Using input statement functions

■ Terminating applications

■ New language features

Channel Extensions
Channel extensions provide access to the system, the files, and the processes,
without using the RUN statement. With channel functions, your application
requires fewer resources (than the RUN statement) and allows you to commu-
nicate through pipes with other applications.

All the functions, except USE channel, are prefixed by channel:: to indicate
that they belong to the channel class.

In the section “Sharing Information Using DDE” on page 5-8, you will find
examples that illustrate the use of the DDE functions.
Using Non-Graphical Extensions to 4GL 5-3

Initializing Channel Extensions
Initializing Channel Extensions
The following statement tells the compiler that channel extensions will be
used during the execution of the 4GL program:

This statement must be located before the MAIN clause in the source code. For
example:

USE channel
MAIN
…
END MAIN

Opening a File
The following function opens the file specified by filename and prepares the
file for reading or writing, as specified by oflag :

Syntax USE channel

Returns None

Syntax channel::open_file(handle, filename, oflag)

handle CHAR(xx) Unique identifier for the specified filename

filename CHAR(xx) Name of the file you want to open

oflag CHAR(1) r Read mode (standard input if the filename
is empty)

w Write mode (standard output if the file-
name is empty)

a Append mode: writes at the end of the file
(standard output if the filename is empty)

u Reads standard read/write on standard
input (filename must be empty)

Returns None
5-4 Informix Dynamic 4GL User Guide

Opening a Pipe
The filename is assigned to the handle that will be called for the different
operations on the opened channel. For example:

CALL channel::open_file("stream", "fglprofile", "r")

Opening a Pipe
The following function opens the pipe specified by commandand prepares the
pipe for reading or writing, as specified by oflag :

The command is assigned to the handle called for the different operations on
the opened channel. For example:

CALL channel::open_pipe("pipe", "ls -l", "r")

Syntax channel::open_pipe(pipe_handle, command, oflag)

pipe_handle CHAR(xx) Unique identifier for the specified command

command CHAR(xx) Name of the command you want to execute

oflag CHAR(1) r Read mode

w Write mode

a Append mode: writes at the end of the file

u Read and write from command (only avail-
able for the UNIX system)

Returns None
Using Non-Graphical Extensions to 4GL 5-5

Setting the Default Separator
Setting the Default Separator
The following function allows you to change the delimiter of each opened
channel defined by its handle within a 4GL program:

Because channel read/write functions are the same as those used by
LOAD/UNLOAD functions, the default separator is defined by the
DBDELIMITER environment variable. The default value is the | (pipe)
character. If delimiter="" (empty string), no delimiter is used. For example:

CALL channel::set_delimiter("pipe",",")

Reading Data from an Opened Channel
The following function reads data from the stream specified by the handle
and stores the data in a buffer.

The storage buffer can be a single variable, a simple array, or a record.

Warning: Specifying a constant value as buffer-list is not detected at compile time
and will generate a core dump on UNIX computers and a general protection fault on
Windows systems.

Syntax CALL channel::set_delimiter(handle, delimiter)

handle CHAR(xx) Unique identifier for open channel

delimiter CHAR(1) Delimiter of field

Returns None

Syntax channel::read(handle, buffer-list)

handle CHAR(xx) Unique identifier for open channel

buffer-list List of variables, if you use more than one vari-
able, you must enclose the list in brackets ([])

Returns SMALLINT TRUE if data has been read from handle; FALSE if
an error occurs
5-6 Informix Dynamic 4GL User Guide

Writing Data to a Pipe or Stream
The following examples show this function. The first example shows a read
function return value in a variable buffer.

DEFINE buffer CHAR(128)
CALL channel::read("pipe_handle", buffer) RETURNING ret

The second example shows a read function returning data in a simple array:

DEFINE buffer ARRAY[1024] of CHAR(128)
DEFINE I INTEGER
LET I = 1
WHILE channel::read("pipe_handle", buffer[I])
 LET I = I + 1
END WHILE

The third example shows a read function returning data in a record:

DEFINEbuffer RECORD
Buff1 CHAR(128),
Buff2 CHAR(128),
Buff3 INTEGER

END RECORD
CALL channel::read("handle", [buffer.Buff1, buffer.Buff2,
buffer.Buff3])

Writing Data to a Pipe or Stream
The following function writes data from a stored buffer to a stream:

The storage buffer can be a single variable, a simple array, a record, or a string
between double quotes (“). For example:

CALL channel::write("handle", "hello world")

Syntax channel::write(handle, buffer_list)

handle CHAR(xx) Unique identifier for open channel

buffer_list List of variables; if you use more than one
variable, you must enclose the list in brackets ([])

Returns None
Using Non-Graphical Extensions to 4GL 5-7

Channel Error Codes
Closing the Channel

The following function closes the channel specified by handle :

For example, assume handle is called handle1:

CALL channel::close("handle1")

Channel Error Codes
Even though several channel functions return no error code, you can test
the status of the called function like all other 4GL functions. You can see the
different error codes returned by testing the status variables:

■ 6340: Cannot open file.

■ 6341: Unsupported mode for 'open file'.

■ 6342: Cannot open pipe.

■ 6343: Unsupported mode for 'open pipe'.

■ 6344: Cannot write to unopened file or pipe.

■ 6345: Channel write error.

■ 6346: Cannot read from unopened file or pipe.

Sharing Information Using DDE
DDE is a form of interprocess communication that uses shared memory to
exchange data between applications. Applications can use DDE for one-time
data transfers and for ongoing exchanges in applications that send updates
to one another as new data becomes available.

With this new extension, you can invoke a Windows application and send or
receive data to or from it. To use this new functionality, the program must be
executed on a Windows PC or on a UNIX workstation but only from the
Windows Client.

Syntax channel::close(handle)

handle CHAR(xx) Unique identifier for open channel

Returns None
5-8 Informix Dynamic 4GL User Guide

Supported Windows Applications
You will find an example that illustrates DDE and the channel features in the
section,“Creating a Custom Character Filter” on page 5-18.

Supported Windows Applications
Dynamic 4GL supports data exchange for the following Windows
applications:

■ Winword 2.0x, 6.0x, 7.x

■ Excel 4.0x 5.0x, 7.x

■ Access 2.0 up to 97

■ Netscape Navigator 3.0

Important: The DDE extension might not run with the latest Microsoft Office
versions (such as Office 97). These applications do not fully support DDE. For more
information, refer to your Microsoft documentation.

Using DDE Extensions
The DDE 4GL process is a four-part process, as follows:

1. The 4GL application sends to the Windows Client (4GL Server) the
DDE order using the TCP/IP channel.

2. The Windows Client executes the DDE order using the Tcl/Tk
functions and sends the data to the Windows application through the
DDE communication process.

3. The Windows application executes the command and sends the
result, which can be data or an error code, to the Windows Client.
Using Non-Graphical Extensions to 4GL 5-9

Opening a DDE Connection
4. The Windows Client sends the result to the 4GL application using the
TCP/IP channel.

Figure 5-1 illustrates this process.

To start a Windows application on the client side, use the winexec function.

Opening a DDE Connection
The following function opens a DDE connection:

Figure 5-1
DDE 4GL Process

Windows Client Application Server

4GL
Program

Windows Application

TCP/IP communication
Communication

Process
2

3

DDE result from Windows client

DDE order from 4GL program 1

4
Tcl/Tk

4GL Server

DDE
result

DDE
order

Syntax DDEConnect(progname, docname)

progname CHAR(128) Program name

docname CHAR(128)

TRUE if the connection has been successfully opened;
FALSE if an error occurs (The error can be seen using the
DDEGeterror function.)

Returns
5-10 Informix Dynamic 4GL User Guide

Executing a Program Command Using DDE
A DDE connection is represented by a unique identifier consisting of a
program name followed by a topic that can be a working document or
system. For example:

CALL DDEConnect("EXCEL", "Document1")

Executing a Program Command Using DDE
The following function executes a command in the specified program using
the DDE channel:

This program can be a macro or any other command available in the calling
program. For example:

LET command = "EXECUTE(\\\"macro1.xlm!Save1\\\";FALSE)"
CALL DDEExecute("EXCEL", "Document1", command) RETURNING ret

Transmitting Values to a Windows Program
The following function sends data to the specified program and document
using the DDE channel:

Syntax DDEExecute(progname, docname, command)

progname CHAR(128) Program name

docname CHAR(128) Working document or system

command CHAR(2048) Command executed through DDE (The syntax of
the command depends on the calling program.)

Returns TRUE if the command has been successfully executed; FALSE if
the command has encountered an error (You see the error using
the DDEGeterror function.)

Syntax CALL DDEPoke(progname, docname, cells, values)

progname CHAR(128) Program name

docname CHAR(128) Working document or system
Using Non-Graphical Extensions to 4GL 5-11

Getting Values from a Windows Program
For example:

LET val="12\\t13\\t14"
CALL DDEPoke("EXECEL", "Document1", "R1C1: R2C2", val) RETURNING ret

Getting Values from a Windows Program
The following function gets values from the specified program and stores it
in a variable:

Each value retrieved by the function is separated by the tabulation character.
The newline character is changed to the ASCII 13 character. For example:

CALL DDEPeek("EXCEL", "Document1", "R1C1:R2C2") RETURNING ret

cells CHAR(128) Working items

values CHAR(128) Data sent to the progname

Returns TRUE if the values have been successfully transmitted;
FALSE if an error occurs (The error can be seen using the
function DDEGeterror.)

Syntax CALL DDEPeek(progname, docname, cells)

progname CHAR(128) Program name

docname CHAR(128) Working document or system

cells CHAR(128) Working items

Returns Data from the windows program;
NULL if an error occurs (The error can be seen using the
DDEGeterror function.)
5-12 Informix Dynamic 4GL User Guide

Closing a DDE Connection
Closing a DDE Connection
The following function loses the specified DDE channel represented by its
unique identifier:

For example:

CALL DDEFinish("EXCEL", "Document1") RETURNING ret

Closing all DDE Connections
The following function closes all DDE connections, as well as the program
sending or receiving data on the DDE channels:

For example:

CALL DDEFinshAll() RETURNING ret

Syntax CALL DDEFinish(progname, docname)

progname CHAR(128) Program name

docname CHAR(128) Working document or system

Returns TRUE if the closing action has been made;
FALSE if an error occurs (The error can be seen using the
DDEGeterror function.)

Syntax DDEFinishAll()

Returns TRUE if all DDE channels have been closed;
FALSE if an error occurs (The error can be seen using the
DDEGeterror function.)
Using Non-Graphical Extensions to 4GL 5-13

Managing DDE Error Messages
Managing DDE Error Messages
The following function retrieves the last error on the DDE channel:

For example:

CALL DDEGeterror() RETURNING mess

Extending the DISPLAY ARRAY Statement
The following statements extend the DISPLAY ARRAY statement:

- BEFORE ROW
statements
.
.
- BEFORE DISPLAY
statements
.
.
- AFTER ROW
statements
.
.
- AFTER DISPLAY
statements
.
.

These statements can be used exactly as in an INPUT ARRAY.

You can use also CONTINUE DISPLAY or EXIT DISPLAY.

Important: The trigger BEFORE ROW is executed before BEFORE DISPLAY, whereas
AFTER ROW is executed before AFTER DISPLAY.

Syntax DDEGeterror()

Returns Error message for the current error or NULL for no error
5-14 Informix Dynamic 4GL User Guide

Returning Key Code Values
The following example shows the DISPLAY ARRAY command:

.

.

.
 LET initdsp=TRUE
 LET array_line=10
 LET screen_line=5
 DISPLAY ARRAY a TO scr.*
 BEFORE DISPLAY
 DISPLAY "before display"
 BEFORE ROW
 IF initdsp THEN
 CALL fgl_dialog_setcurrline(screen_line,array_line)
 END IF
 LET initdsp=FALSE
 AFTER ROW
 LET i=arr_curr()
 DISPLAY i TO a_field
 ON KEY(F22)
 LET i=arr_curr()
 IF i == 40 THEN
 EXIT DISPLAY
 END IF
 AFTER DISPLAY
 DISPLAY "after display"
 LET i=arr_curr()
 IF i > 50 THEN
 CONTINUE DISPLAY
 END IF
 END DISPLAY
.
.
.

Returning Key Code Values
You can return a key code value after pressing a keystroke. For P code, the
function is fgl_getkey. For C code, the function is uiInkey.
Using Non-Graphical Extensions to 4GL 5-15

Returning Key Codes from P Code
Returning Key Codes from P Code
The following function waits for a keystroke and returns the key code of a
pressed key:

Example: The following program displays a message when you press T:

MAIN
DEFINE key INTEGER

 --#CALL fgl_init4js()
 --#LET key = fgl_getkey ()
 IF key = 116 THEN
 --#CALL fgl_winmessage("fgl_winmessage", "You have pressed T", "info")
 END IF
END MAIN

If you press T, you receive the message that Figure 5-2 shows.

This function can be used in association with the fgl_keyval() function of
4GL. The following table shows the values returned by the fgl_getkey
function.

Syntax fgl_getkey()

Returns Value of the keystroke

Figure 5-2
fgl_winmessage

Window

Value Returned Meaning

0 through 255 A single character from the ISO8859-1 character set.

This does not apply if you are using a GLS locale with another
character set.

For more information, see the INFORMIX-4GL Reference.

3000 through 3063 Function keys F1 through F64.

2000 KEY_UP

 (1 of 2)
5-16 Informix Dynamic 4GL User Guide

Returning Key Codes from P Code
2001 KEY_DOWN

2002 KEY_LEFT

2003 KEY_RIGHT

2004 KEY_BACKUP

2005 KEY_NXTSCR

2006 KEY_PRVSCR

2007 KEY_LBSAME

2008 KEY_HELP

2009 KEY_INSCHAR

2010 KEY_DELCHAR

2011 KEY_INTRPT

2012 KEY_HOME

2013 KEY_END

2014 KEY_INSLINE

2015 KEY_DELLINE

2016 KEY_ACCEPT

2017 KEY_DBINIT

2018 KEY_AUTONEXT (returned whenever an auto-next field is
exited, regardless of which key was actually pressed.)

4003 DEL

Value Returned Meaning

 (2 of 2)
Using Non-Graphical Extensions to 4GL 5-17

Returning Key Codes from C Functions
Returning Key Codes from C Functions
In C functions, the equivalent of the function fgl_getkey() used to wait for
a keystroke is uiInkey(), as follows:

Creating a Custom Character Filter
You can create your own character filter that converts the key codes sent by
the program to the interface (and vice versa). First, you must compile the C
program $FGLDIR/src/mkchartab.c. This program allows you to convert an
input file that contains the new key code mapping to an output file that
Dynamic 4GL can use.

An example of a mapping file is $FGLDIR/src/ansinogr.map. Once compiled
with the mkchartab tool, this file is the same as the current
$FGLDIR/etc/iso/ansinogr.ct file. You can then use the gui.chartable entry in
the configuration file.

The filter source files contain two sections, an output section and an input
section. The output section contains the conversion table for the characters
going to the output device. The input section contains the conversion table
for the characters coming from the input device.

Syntax uiInkey()

Returns Value of the keystroke
5-18 Informix Dynamic 4GL User Guide

Starting a UNIX Emulator
The following example is for the file ansinogr.map:

###
Character conversion ANSI ==> VT100
Input section, output section
Syntax :
[input|output]
x y
x is replaced by y
x and y possible values are : 'x',0xDDDD , DDDDD (D =
digit)
List of mapped characters :
A", E", I", O", U", a", e", i", o", u",
ss,
A`, E`, I`, O`, U`, a`, e`, i`, o`, u`,
A', E', I', O', U', a', e', i', o', u'
###
output
0x8e 0xc4
0x80 0xc7
0x90 0xc9
 " "
 " "
 " "
input
0xc4 0x8e
0xc7 0x80
0xc9 0x90
 " "
 " "
 " "

Starting a UNIX Emulator
This function allows a RUN of a program needing a UNIX terminal emulator
on the Windows client, even if the running F4GL program has been started
without a visible terminal.

In this syntax, command is a string or variable that contains the commands to
be run. The UNIX terminal will be raised and activated and then lowered
later, when the program that needs it finishes.

Syntax fgl_system (command)
Using Non-Graphical Extensions to 4GL 5-19

Starting Windows Applications
Running this function correctly requires the termcap entries hp (for raising
the terminal) and rp (for lowering the terminal). For the Windows front end
terminal emulation, the entries should have the values:

:hp=\E[0y:rp=\E[1y:\

Starting Windows Applications
The following functions start a Windows program on the computer that runs
the Windows Client.

Example:

.

.
LET var = WinExec("C:\\\\EXCEL\\\\EXCEL.EXE")
.
.

This line starts excel.exe on the Windows PC running the front end.

Those functions return TRUE if the application is successfully started. If
FALSE is returned, you can see the error using the function DDEGeterror.

Four back slashes are needed as escape characters to transmit one to the client
computer.

Syntax WinExec (progname) Starts a program on the Windows
Client without waiting for its end to
resume execution of the 4GL program

WinExecWait

(progname)

Starts a program on the Windows
Client and waits for its end to resume
execution

or

progname CHAR(256) Program name with or without its
absolute path
5-20 Informix Dynamic 4GL User Guide

Using Input Statement Functions
Using Input Statement Functions
The following set of functions must be executed inside dialog functions, such
as INPUT, INPUT ARRAY, DISPLAY ARRAY, and PROMPT statements. Using
these functions outside of a dialog function might create errors at compile
time or at runtime.

Returning a Value if a Field has been Modified
The following function is called by AFTER { FIELD | INPUT | CONSTRUCT }
and returns a value that indicates whether or not the last field has been
modified:

The following source code tests if an update must be made after an input only
on the last field. If something has changed during the input, a dialog box will
be displayed that asks you if you want to accept the input. If not, a message
appears informing you that nothing has to be done.

MAIN
DEFINE answer, CHAR(100),
 inst RECORD
 c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 CHAR(100)
 END RECORD
--#CALL fgl_init4js()
 OPEN WINDOW w1 AT 1,1 WITH FORM "demo"
 LET answer = "yes"

 WHILE answer != "yes"
 INPUT BY NAME inst.*
--# AFTER FIELD c10
--# IF fgl_buffertouched() THEN
--# LET answer = fgl_winquestion("Notice", "Do you want to accept
this
--# row","yes", "yes|no", "info",0)
--# ELSE
--# CALL fgl_winmessage("Notice", "Nothing to be done", "info")
--# LET answer = "no"
--# END IF
--# END INPUT
 END WHILE
CLOSE WINDOW w1
END MAIN

Syntax fgl_buffertouched()

Returns TRUE if the last field has been modified
Using Non-Graphical Extensions to 4GL 5-21

Returning a Value if a Field has been Modified
The first screen displays the form with ***** as the default value, as
Figure 5-3 illustrates.

If you exit the input without updating the row, the dialog box that Figure 5-4
shows appears and informs you that no changes to the row have been made.

If something has changed during the input, the dialog box that Figure 5-5
shows appears.

Figure 5-3
Default Value

Screen

Figure 5-4
Exiting Without
Update Screen

Figure 5-5
Prompt for

Accepting Changes
5-22 Informix Dynamic 4GL User Guide

Returning the Name of a Field
Returning the Name of a Field
The following function returns the name of the currently prompted field:

Returning the Value of a Field
The following function returns the value of the currently prompted field:

Setting the Value in a Field
The following function sets a value in the currently prompted field:

Syntax fgl_dialog_fieldname() or dialog::fieldname()

Returns Name of current field

Syntax fgl_dialog_getbuffer() or dialog.getbuffer()

Returns Value of current field

Example See fgl_dialog_setbuffer() example below

Syntax fgl_dialog_setbuffer(var) or dialog.setbuffer(var)

var Value or variable containing the value to be set in the current
field

Returns None
Using Non-Graphical Extensions to 4GL 5-23

Displaying a Row at a Given Line in a Screen Array
Displaying a Row at a Given Line in a Screen Array
The following function displays a row of the program array to be set at a
given line of the screen array:

The following example creates a display array with two on key options. When
you press F4, the 100th row of the program record is displayed at the fifth line
of the screen array, and when you press F5, the 400th row of the program
record is displayed at the first line of the screen array.

MAIN
DEFINE a ARRAY[500] OF RECORD
 c1 CHAR(10),
 c2 CHAR(12),
 c3 char(10)
 END RECORD
DEFINE i INTEGER

--#CALL fgl_init4js()
FOR i = 1 TO 500
LET a[i].c1 = i CLIPPED
LET a[i].c2 = "555-666-" CLIPPED, a[i].c1
LET a[i].c3 = "Washington"
END FOR
OPEN WINDOW w1 AT 1,1 WITH FORM "demo"
CALL SET_COUNT(i)
DISPLAY ARRAY a TO scr.*
--#ON KEY(f4)
--#CALL fgl_dialog_setcurrline(5,100)
--#ON KEY(f5)
--#CALL fgl_dialog_setcurrline(1, 400)
END DISPLAY
CLOSE WINDOW w1
END MAIN

Syntax fgl_dialog_setcurrline (scrl , progl) or
dialog.setcurrline (scrl , progl)

scrl Line of the screen array becoming current

progl Line of the program array becoming current

Returns None
5-24 Informix Dynamic 4GL User Guide

Displaying a Row at a Given Line in a Screen Array
Compile this program with the following form:

DATABASE formonly
SCREEN
{
 CODE Phone Number City
[f001] [f002] [f003]
[f001] [f002] [f003]
[f001] [f002] [f003]
[f001] [f002] [f003]
[f001] [f002] [f003]
[f001] [f002] [f003]
[f001] [f002] [f003]
}
ATTRIBUTES
 f001 = formonly.c1, UPSHIFT;
 f002 = formonly.c2, UPSHIFT;
 f003 = formonly.c3;
END
INSTRUCTIONS
DELIMITERS " "
SCREEN RECORD scr[7] (formonly.c1,
 formonly.c2,
 formonly.c3);
--#keys
--#f4 = "100 th"
--#f5 = "400 th"
END
Using Non-Graphical Extensions to 4GL 5-25

Displaying a Row at a Given Line in a Screen Array
After executing the program, an array appears with four buttons on the right
side of the dialog box, as Figure 5-6 shows. Accept and Interrupt are created
automatically by the program due to the fglprofile configuration.

Figure 5-6
setcrline Dialog Box
5-26 Informix Dynamic 4GL User Guide

Returning the Position of the Cursor
If you press F4 or click the 100th button, the screen array that Figure 5-7
shows is displayed with the fifth row being current in the screen record
displaying the 100th row from the program array.

Now press F5 or click the 400th button. The form is displayed with the first
row being current and containing the 400th row of the program array.

Returning the Position of the Cursor
The following function returns the position of the cursor in the currently
prompted field:

In this example, you can type a few letters in the fields and then click the
getcursor button. The position of the cursor will be displayed in the error
message list.

Figure 5-7
setcrline Dialog Box

Syntax fgl_dialog_getcursor() or fgl_getcursor()

Returns Position of the cursor in the field
Using Non-Graphical Extensions to 4GL 5-27

Returning the Position of the Cursor
The 4GL source code, demo1.4gl:

MAIN
DEFINE text CHAR(512)
DEFINE pos INTEGER
OPEN WINDOW w1 AT 1,1 WITH FORM "demo1"
INPUT BY NAME text
 ON KEY (f4)
 --# LET pos = fgl_dialog_getcursor()
 --# MESSAGE" current position: ", pos
END INPUT
CLOSE WINDOW w1
END MAIN

And the form-specification file, demo1.per:

SCREEN
{
 Short entry: [f001]
}
ATTRIBUTES
f001 = formonly.text type char
--#, scroll
;
END
INSTRUCTIONS
DELIMITERS " "
--# KEYS
--# "f4" = "getcursor"
END

Setting the Cursor Position

The following function sets the cursor at a defined position in the currently
prompted field:

If you specify a cursor position greater than the length of the variable, the
cursor will disappear.

Syntax fgl_dialog_setcursor (pos) or dialog.setcursor (pos)

pos Position in the field where the cursor has to be positioned
5-28 Informix Dynamic 4GL User Guide

Terminating Applications
Terminating Applications
The following option executes a 4GL function when the application window
is closed by a user action, for example, ALT-F4 on Windows clients:

If a user tries to stop an application in graphical mode, the application either
stops, continues, or a function is called.

If this option is not used by the program, the application displays a warning
message that the application cannot be stopped:

This option defines the function that must be called when the application
receives the SIGTERM signal (only available on UNIX).

If this statement is not called, the program is stopped with the exit value of
SIGTERM (15).

Tip: You can stop the program in a clean manner using ROLLBACK WORK.
However, this does not have any user interaction.

New Language Features
The following language features of INFORMIX-4GL were introduced in
Version 7.30 (or in a few cases, in Version 7.20). All these features are
supported by Dynamic 4GL, Version 3.0.

Syntax OPTIONS ON CLOSE APPLICATION {STOP|CONTINUE|
CALL func}

Returns None

Syntax OPTIONS ON CLOSE APPLICATION {WARN|SHOW
WARNING}

Example OPTIONS ON CLOSE APPLICATION WARN

Syntax OPTIONS ON TERMINATE SIGNAL CALL func

Returns None
Using Non-Graphical Extensions to 4GL 5-29

Enhanced SQL Syntax Support
4GL 7.30 introduces new language features in several areas:

■ Enhanced SQL syntax support

■ Syntax for expansion of abbreviated year values

■ Enhanced syntax for screen array management

■ Dynamic configuration of report output

■ New built-in operators

■ New syntax to hide the comment line

■ Editing multibyte data in 4GL forms

■ New conditional comments

■ Deprecated features

Enhanced SQL Syntax Support
Like all earlier releases since 4GL 4.10, this release supports most of the
statement set of Version 4.1 of the Informix dialect of SQL language. These
SQL statements can be directly embedded within 4GL source files. Statements
and syntax enhancements added later than Version 4.10 of SQL must be
prepared, if they are preparable.

Support For Embedded SQL 7.3 Syntax

4GL 7.30 supports all the directly embedded SQL statements that earlier
releases of 4GL could embed, but also adds direct support for the following
additional SQL statements:

■ CONNECT

■ CREATE PROCEDURE FROM

■ DISCONNECT

■ EXECUTE IMMEDIATE

■ SET CONNECTION
5-30 Informix Dynamic 4GL User Guide

Enhanced SQL Syntax Support
4GL 7.30 also supports the following additional SQL syntax features:

■ EXECUTE

The EXECUTE statement now supports the INTO and USING clauses
in both orders:

{ { [INTO varlist1] [USING varlist2] } |
{ [USING varlist1] [INTO varlist2] } }

■ FOREACH

The FOREACH statement now supports the WITH REOPTIMIZATION
clause:

{ [USING varlist1] [INTO varlist2] WITH REOPTIMIZATION }

■ OPEN

The OPEN statement now supports the WITH REOPTIMIZATION
clause:
{ [USING varlist] WITH REOPTIMIZATION }

The non-keyword terms in these SQL statements can be specified as quoted
strings or as character variables.

These SQL statements require an Informix database that recognizes them.
When Dynamic 4GL accesses an Informix database earlier than Version 7.x,
for example, the WITH REOPTIMIZATION clause has no effect.

Support for Preparable SQL Statements

Earlier releases of 4GL supported post-4.10 SQL syntax by the PREPARE
feature, for SQL statements that can be prepared.

Continued Support Through PREPARE

4GL 7.30 continues to support the preparable SQL syntax of Informix 7.30
database servers. See the Informix Guide to SQL: Syntax description of
PREPARE for a list of the SQL statements that cannot be prepared.
Using Non-Graphical Extensions to 4GL 5-31

Enhanced SQL Syntax Support
New SQL Statement Blocks

The same preparable statements that Section 2.1 describes are also supported
in 4GL 7.30 by a new mechanism, SQL statement blocks, whose syntax
resembles that of embedded SQL statements in ESQL/C:

SQL statement END SQL

Only a single preparable SQL statement can appear in each SQL block. If you
delimit a preparable SQL statement by the keyword SQL before the SQL
statement, and by the keywords END SQL after the SQL statement, then 4GL
7.30 prepares, executes, and frees the specified SQL statement when its SQL
block is encountered, as in this example:

SQL
BEGIN WORK

END SQL

Any 4GL variables that appear within an SQL block must be prefixed by the
$ symbol. One or more whitespace characters, such as blank spaces, can
appear between $ and the name of the host variable.

SQL
UPDATE SomeTable
SET (Col2, Col3, ... ColN) = ($rec.col1 THRU $rec.colN)
WHERE CURRENT OF somecursor

END SQL

In the declaration of a database cursor, the following syntax that includes an
SQL statement block within a DECLARE statement is valid:

DECLARE curs CURSOR
SQL
... -- define the SELECT, UPDATE, or INSERT cursor

END SQL

An SQL block cannot appear, however, within a PREPARE statement.
5-32 Informix Dynamic 4GL User Guide

Enhanced SQL Syntax Support
SQL blocks of 4GL 7.30 (and Dynamic 4GL 3.0) support both singleton
EXECUTE PROCEDURE statements that return values and singleton SELECT
statements that return values, as in the following examples:

SQL
EXECUTE PROCEDURE someproc(1, $invar) INTO $var1, $var2

END SQL

SQL
SELECT Col1, Col2 INTO $var1, $var2
 FROM SomeTable WHERE PKey = $var3

END SQL

The EXECUTE IMMEDIATE statement cannot appear within an SQL block.

Question-mark place-holders (?) in SQL blocks can appear in strings that are
prepared, but not in other contexts. Thus, the following code generates a
syntax error:

DECLARE cname CURSOR FOR
SQL
 SELECT * FROM SomeWhere
WHERE SomeColumn BETWEEN ? AND ? -- Invalid!!!

END SQL

Trailing semicolon (;) symbols are valid after the SQL statement, but have no
effect. Semicolons that separate two statements within the SQL block cause a
syntax violation error message to be issued by the compiler. This causes the
compilation to fail.

Optimizer directives and comments within delimited SQL statement blocks
are passed to the database server, if you use the standard notation for these
features in Version 7.30 and later Informix database servers. Such directives
can immediately follow the DELETE, SELECT, or UPDATE keywords in SQL
data manipulation statements. The plus (+) sign must be the first character
following the comment indicator that begins an optimizer directive. The
sharp (#) symbol is not a valid comment indicator in this context, but braces
({ }) or double-hyphen (--) comment indicators are valid within an SQL
block.

For more information, see the Informix Guide to SQL: Syntax.
Using Non-Graphical Extensions to 4GL 5-33

Syntax for Expansion of Abbreviated Year Values
Syntax for Expansion of Abbreviated Year Values
Some users (and some applications) abbreviate year values during data entry,
so that, for example, September 9, 1999 might be entered as 9/9/99 (or with
some other order of time units or time-unit separator symbols). Most earlier
releases of 4GL expanded abbreviated year values by prefixing any 2-digit
year with the two leading digits of the current year from the system clock.

Examples of statements of SQL and other 4GL statements and operators that
can specify abbreviated year values include the following:

SELECT * FROM customer_name WHERE call_dtime
BETWEEN (98-01 01) YEAR TO DAY AND DATETIME (04-12 31) YEAR TO DAY

UPDATE customer SET (city, reg_date)=("Palo Alto","12/01/04")
WHERE customer_num = 103

INSERT INTO newtable SELECT dates FROM oldtable WHERE date1 "01/05/24"

DELETE FROM orders where order_date IN ("01/01/98", "12/31/04")

PREPARE up_sel FROM 'SELECT * FROM customer WHERE cust_date < "01/01/00"'

DEFINE cust_date DATE
LET cust_date = "02/29/00"
PROMPT for cust_date

DEFINE cust_date DATETIME YEAR TO DAY
LET cust_date = "00-02-29"
PROMPT for cust_time

DATE()
DEFINE d DATE
LET d = DATE ("02/29/00") ---- default DATE format
LET d = DATE ("00-29-02") ---- format Y2MMDD-

EXTEND()
DEFINE d1 DATETIME YEAR TO MINUTE
LET d1 = EXTEND("02/28/00" YEAR TO MINUTE)

UNITS
DEFINE d1 INTERVAL DAY TO DAY
LET d1 = (DATE("03/01/00") - DATE("02/28/00")) UNITS DAY

WEEKDAY()
DEFINE d1 INT
LET d1 = WEEKDAY("02/28/00")

YEAR()
DEFINE d1 INT
LET d1 = YEAR ("02/28/00")
5-34 Informix Dynamic 4GL User Guide

Syntax for Expansion of Abbreviated Year Values
The CONSTRUCT, INPUT, and INPUT ARRAY statements can assign to
variables the values that the user enters into the fields of the screen form.

Legacy Support for DBCENTURY

4GL 7.2 (and a few earlier releases to which this feature was back-ported)
support the DBCENTURY environment variable, which can be set to any of
four values, each of which specifies a different rule for expanding 2-digit
years. (If the user enters a single-digit year, 4GL prefixes this digit with a
leading zero, and then applies the current expansion rule to the 2-digit
result.) This support is continued in 4GL 7.30.

You can set DBCENTURY as you would any other environment variable. The
valid settings (and the expansion rule that each specifies) are listed here:

For example, on UNIX systems that use the C shell, the specification

setenv DBCENTURY=C

instructs 4GL to expand 2-digit years to the closest date.

DBCENTURY is case-sensitive. If DBCENTURY is not set, or set to an invalid
value (such as any lowercase letter), then the default is R, which emulates the
legacy behavior of most previous 4GL releases.

Setting Expansion Algorithm

R Prefix the entered value with the first two digits of the current year
(from the system clock-calendar at runtime).

C Prefix the entered value with the first two digits of the past, current, or
future year that gives a date that is closest to the current date (from the
system clock-calendar).

P Prefix the entered value with the first two digits of the past (or current)
year that gives the most recent date in the past.

F Prefix the entered value with the first two digits of a future (or current)
year that gives the earliest date in the future.
Using Non-Graphical Extensions to 4GL 5-35

Syntax for Expansion of Abbreviated Year Values
Unless you override DBCENTURY (as described in the next section), 4GL
applies the DBCENTURY value that was in effect when program execution
began to all year values (in DATE or DATETIME fields only) that have fewer
than 3 digits; as with other environment variables, changing the
DBCENTURY setting after program execution commences has no effect on
any currently executing 4GL program. The results of using DBCENTURY are
sensitive to the time of program execution and to the accuracy of the system
clock-calendar.

DBCENTURY has no effect on fields that are not of the DATE or DATETIME
data types, nor on DATETIME values that do not include YEAR as its first time
unit, nor on year values that are not abbreviated. It can also affect data-type
conversion of properly-formatted character strings that you assign to DATE
or DATETIME variables.

To avoid expansion of years in the remote past that have only one or two
digits, you must pad such values on the left with leading zeros, so that they
have at least 3 digits.

New CENTURY Field Attribute

The DBCENTURY environment variable provides a global default rule for
expanding 2-digit years. 4GL 7.3 supports a new field attribute in form speci-
fications, called CENTURY, that provides the same functionality as
DBCENTURY but at the field level of granularity. Unlike DBCENTURY, which
provides a global expansion algorithm, different DATE or DATETIME fields
can have different CENTURY settings. It supports the same R, C, P, and F
settings as DBCENTURY, with the same semantics. It has this syntax:

CENTURY = { "F" | "C" | "P" | "R" }

Unlike DBCENTURY, the CENTURY field attribute is not case-sensitive. For
example,

field-tag = ship_date, CENTURY = "C"

and

field-tag = ship_date, CENTURY = "c"

are equivalent. However, quotes are required around the setting.
5-36 Informix Dynamic 4GL User Guide

Syntax for Expansion of Abbreviated Year Values
If a DATE or DATETIME field has no CENTURY attribute, the DBCENTURY
setting (or the R default, if DBCENTURY is not set) determines the expansion
rule.

If CENTURY and DBCENTURY have different settings, then CENTURY takes
precedence in the DATE and DATETIME fields that have this attribute.

Just as with DBCENTURY, the results of using CENTURY are sensitive to the
time of program execution and the accuracy of the system clock-calendar.

CENTURY has no effect on fields that are not DATE or DATETIME data types,
nor on DATETIME values that do not include YEAR as the first time unit, nor
on unabbreviated year values. CENTURY can also affect conversion of
properly-formatted character strings to DATE or DATETIME variables.

CENTURY is not needed for fields that display data from the database (as
distinct from fields in which users enter data), because DATE columns of the
database (and DATETIME columns that include the YEAR time unit) store only
4-digit years, even if a display field of the 4GL application is designed to show
only trailing digits of YEAR values from the database.

New CENTURY Display Attribute in PROMPT Statements

The PROMPT statement of 4GL can request that the user enter a value. If the
response value will be stored in a DATE or DATETIME variable, you can
include CENTURY in the ATTRIBUTE clause that follows the FOR keyword,
using the same semantics as in a form specification. The following PROMPT
statement sets the expansion rule to the nearest date in the future:

DEFINE pasture DATE
PROMPT "When will you retire?" ATTRIBUTE (BLUE, REVERSE) FOR pasture

ATTRIBUTE (GREEN, CENTURY = "F") ON KEY (F1) EXIT PROGRAM
END PROMPT

The value that follows the = symbol must appear within quotation marks,
like the setting of the CENTURY field attribute.

Important: Dynamic 4GL requires Client SDK 2.30 to support the CENTURY
attribute.
Using Non-Graphical Extensions to 4GL 5-37

Enhanced Syntax for Screen Array Management
Enhanced Syntax for Screen Array Management
4GL 7.30 supports several new features that enhance the syntax of the INPUT
ARRAY statement (and in some cases, DISPLAY ARRAY) to support program
control over screen arrays.

Data Editing in Screen Arrays

New syntax has been added by which the programmer can prevent the user
from performing Insert or Delete operations during the INPUT ARRAY
statement. Such restrictions can be global to the entire screen array or can
apply only to specific screen records.

New CANCEL INSERT Keywords

Insert operations of the user can be cancelled programmatically for
individual screen records of the current 4GL form by including the CANCEL
INSERT keywords within the BEFORE INSERT control block. The cancelled
Insert operation has no effect on the active set of rows that INPUT ARRAY is
processing.

The new syntax for the BEFORE INSERT control block of INPUT ARRAY state-
ments is:

INPUT ARRAY ...
BEFORE INSERT statement... { CANCEL INSERT }

Here statement is any statement of 4GL that is valid within a BEFORE INSERT
control block of INPUT ARRAY.

If CANCEL INSERT is specified, the user is prevented from entering rows by
using the Insert key. This feature also prevents the user from entering rows
by moving the screen cursor past the last initialized row by using an ARROW

key, TAB key, RETURN key, or (in Dynamic 4GL) the ENTER key.

Here is a code example:

INPUT ARRAY ...
BEFORE INSERT

IF ARR_CURR() == 3
THEN
CANCEL INSERT

END IF
END INPUT
5-38 Informix Dynamic 4GL User Guide

Enhanced Syntax for Screen Array Management
This example disables the Insert key for only the third row.

In contexts like this, two cases arise:

■ Case 1: The form is already populated with data.

Suppose that it contains five rows filled with data. If the cursor
comes to the third (populated) row and F1 is pressed, a new row is
not inserted, because CANCEL INSERT prevents any Insert operation
for this row.

■ Case 2: Only some of the rows are filled with data.

Suppose that only two of a possible five rows contain data. In this
case, the user cannot move to the third row using the ARROW, TAB or
RETURN key, because CANCEL INSERT prevents any Insert operation
for this row.

For more information about CANCEL INSERT, see “New CANCEL DELETE
Keywords” on page 5-39.

New CANCEL DELETE Keywords

Delete operations by the user can also be cancelled programmatically for
individual screen records of the current 4GL form by including the CANCEL
DELETE keywords within the BEFORE DELETE control block. The cancelled
Delete operation has no effect on the active set of rows that INPUT ARRAY is
processing.

The new syntax for the BEFORE DELETE control block of INPUT ARRAY state-
ments is:

INPUT ARRAY ...
BEFORE DELETE statement... { CANCEL DELETE }

Here statement is any statement of 4GL that is valid within a BEFORE DELETE
control block of INPUT ARRAY.

If CANCEL INSERT or CANCEL DELETE is executed, the current BEFORE
INSERT or BEFORE DELETE control block is terminated, and control of
program execution passes to the next statement that follows the terminated
control block.
Using Non-Graphical Extensions to 4GL 5-39

Enhanced Syntax for Screen Array Management
As an example, the programmer might want to implement a system where
the user is allowed to delete all but one of the rows, but once a row is deleted,
a replacement row cannot be inserted in its place. The following code imple-
ments this design:

DEFINE n_rows INTEGER
DEFINE arrayname ARRAY[100] OF RECORD
. . .

INPUT ARRAY arrayname WITHOUT DEFAULTS FROM s_array.*
ATTRIBUTES(COUNT = n_rows, MAXCOUNT = n_rows,
INSERT ROW = FALSE, DELETE ROW = TRUE)

BEFORE INSERT
CANCEL INSERT

BEFORE DELETE
LET n_rows = n_rows - 1
IF n_rows <= 0 THEN
CANCEL DELETE

END IF

END INPUT

New INSERT ROW Attribute

4GL 7.30 supports another new syntax feature that provides a means by
which the programmer can enable or disable Insert operations for the entire
form during INPUT ARRAY statements. The new INSERT ROW attribute can be
set to TRUE or FALSE in the ATTRIBUTE clause that follows the INPUT ARRAY
binding clause.

The new attribute has this syntax:

INSERT ROW [= { TRUE | FALSE }]

When INSERT ROW = FALSE is specified, the user cannot perform any Insert
actions within the INPUT ARRAY statement.

For additional information about the INSERT ROW attribute in INPUT ARRAY
statements, see “New DELETE ROW Attribute” on page 5-41.
5-40 Informix Dynamic 4GL User Guide

Enhanced Syntax for Screen Array Management
New DELETE ROW Attribute

4GL 7.30 also supports a new syntax feature that provides a means by which
the programmer can enable or disable Delete operations for the entire form
during INPUT ARRAY statements. The new DELETE ROW attribute can be set
to TRUE or FALSE in the ATTRIBUTE clause that follows the INPUT ARRAY
binding clause.

The new attribute has this syntax:

DELETE ROW [= { TRUE | FALSE }]

When DELETE ROW = FALSE is specified, the user cannot perform any DELETE
actions within the INPUT ARRAY statement.

When INSERT ROW = TRUE or DELETE ROW = TRUE is specified, then the user
is not prevented from performing the action for which TRUE is specified.

The default in both cases is TRUE, which corresponds to the legacy behavior
of previous 4GL releases.

In Dynamic 4GL 3.0, these attributes have an extended syntax:

INSERT ROW [= { TRUE | FALSE | var }]
DELETE ROW [= { TRUE | FALSE | var }]

Here var is a variable that contain a Boolean value. If the value of var is zero
or FALSE or NULL, then the value of the attribute is FALSE. For other values
of var (or by default, if no value is specified) the value of the attribute is TRUE.

The following example disables Insert and Delete operations on rows of the
screen array:

INPUT ARRAY arrayname WITHOUT DEFAULTS FROM s_array.*
ATTRIBUTE(INSERT ROW = FALSE, DELETE ROW = FALSE)

New CURRENT ROW DISPLAY Attribute

4GL 7.30 has added a new attribute to the DISPLAY ARRAY and INPUT ARRAY
statements. This attribute enables the 4GL programmer to highlight the
current row of a screen array. Dynamic 4GL always highlights the current row
in GUI mode, so this new attribute is primarily useful in character-based
deployment.
Using Non-Graphical Extensions to 4GL 5-41

Enhanced Syntax for Screen Array Management
For both DISPLAY ARRAY and INPUT ARRAY, the ATTRIBUTE clause can now
include the following syntax:

CURRENT ROW DISPLAY = "string"

Here string is a comma-separated list of screen attributes. The string can
include zero or more intensity attributes from among the following:

■ REVERSE

■ UNDERLINE

■ BOLD

■ BLINK

The string can also include one or none of the color attributes from among the
following:

■ BLACK

■ BLUE

■ CYAN

■ GREEN

■ MAGENTA

■ RED

■ WHITE

■ YELLOW

These attributes are applied to the current row of the screen array. The
contents of string is not case-sensitive.

An error is issued if string is an empty string:

CURRENT ROW DISPLAY = "" --Error!

The following statement sets the CURRENT ROW DISPLAY attribute:

INPUT ARRAY arrayname WITHOUT DEFAULTS FROM s_array.*
ATTRIBUTE (BOLD, CURRENT ROW DISPLAY = "RED, REVERSE", UNDERLINE)

The rows other than the current row in this array are displayed in bold and
underlined, but the current row is displayed in red and in reverse video. If
there is only one row in the screen array, then the current row is the only one
that is displayed.
5-42 Informix Dynamic 4GL User Guide

Enhanced Syntax for Screen Array Management
New COUNT Attribute

4GL 7.30 supports two additional new attributes in the ATTRIBUTE clause of
INPUT ARRAY statements, in order to provide dynamic control of input to
screen arrays.

The COUNT attribute can specify the number of records within a program
array that contain data. It can appear within the ATTRIBUTE clause of the
INPUT ARRAY statement.

In 4GL 7.30 and Dynamic 4GL 3.0, COUNT has the following syntax:

COUNT = { n | var }

Here n is a literal integer, and var is an INTEGER or SMALLINT variable. The
specification:

COUNT = 5

is equivalent to the 4GL statement:

CALL SET_COUNT(5)

Both of these specifications restrict the number of screen records that can be
displayed in the current screen array to 5.

New MAXCOUNT Attribute

The MAXCOUNT attribute can specify the dynamic size of a screen array. This
can be less than the declared size that the INSTRUCTIONS section of the .per
file specifies for the screen array. MAXCOUNT is valid only within the
ATTRIBUTE clause of the INPUT ARRAY statement.

In 4GL 7.30 and in Dynamic 4GL 3.0, MAXCOUNT has this syntax:

MAXCOUNT = { n | var }

Here n is a literal integer, and var is an INTEGER or SMALLINT variable. The
following example shows an INPUT ARRAY statement that specifies both the
MAXCOUNT and COUNT attribute:

INPUT ARRAY prog_array WITHOUT DEFAULTS
FROM scr_array.* ATTRIBUTE(MAXCOUNT = x, COUNT = y)
Using Non-Graphical Extensions to 4GL 5-43

Enhanced Syntax for Screen Array Management
Here x and y are literal integers or integer variables. In this example, y is the
number of records that contain data within the program array. The
MAXCOUNT value of x determines the dynamic size of the screen array that
displays the program array.

If MAXCOUNT is specified as less than one or greater than the declared
program array size, then the original program array size is used as the
MAXCOUNT value.

Both COUNT and MAXCOUNT can be specified in the same ATTRIBUTE
clause:

CALL SET_COUNT(5)
INPUT ARRAY prog_array WITHOUT DEFAULTS

FROM scr_array.* ATTRIBUTE(MAXCOUNT = 10, COUNT = 6)

In this case, the COUNT attribute overrides the SET_COUNT value. The
number of rows displayed will be 6.

New FGL_SCR_SIZE() Built-In Function

4GL 7.30 supports a new built-in function that accepts as its argument the
name of a screen array, and returns an integer that corresponds to the number
of screen records in that screen array.

It has this calling syntax:

FGL_SCR_SIZE ({ "array" | var })

Here array is the name of the screen array, as declared in the INSTRUCTIONS
section of the form specification. This can appear in the function call as an
identifier enclosed between quotation marks, or as a character variable
containing the name of the screen array.
5-44 Informix Dynamic 4GL User Guide

Enhanced Syntax for Screen Array Management
The following form-specification file (called file.per) declares a screen array
that the subsequent 4GL code example references:

DATABASE FORMONLY

SCREEN
{
[f1] [f2]
[f1] [f2]
[f1] [f2]
[f3] [f4]
[f3] [f4]
[f5]
}

ATTRIBUTES
f1 = FORMONLY.a ;
f2 = FORMONLY.b ;
f3 = FORMONLY.c ;
f4 = FORMONLY.d ;
f5 = FORMONLY.e ;

INSTRUCTIONS
DELIMITERS ""
SCREEN RECORD s_rec1[3] (a,b)
SCREEN RECORD s_rec2 (c,d)

The following 4GL program invokes the FGL_SCR_SIZE() function:

MAIN

DEFINE n1,n2 INT
DEFINE ch CHAR(10)

OPEN WINDOW w1 AT 2,3 WITH FORM "file" ATTRIBUTE (BORDER)
CALL fgl_scr_size("s_rec1") RETURNING n1
LET n1 = fgl_scr_size("s_rec1") -- Can also be called

-- in a LET statement
DISPLAY "n1 = ", n1

LET ch = "s_rec2"
CALL fgl_scr_size(ch) RETURNING n2
LET n2 = fgl_scr_size(ch) -- Can also be called

-- in a LET statement
DISPLAY "n2 = ", n2
CLOSE WINDOW w1
END MAIN
Using Non-Graphical Extensions to 4GL 5-45

Dynamic Configuration of Report Output
This example produces the following output:

n1 = 3
n2 = 2

The proper value is returned, even though the array dimension is not
specified.

An error is returned if no form is open, or if the specified screen array is not
in the current open form.

Dynamic Configuration of Report Output
All earlier releases of 4GL required that the parameters of the OUTPUT section
of a report be specified as fixed values (either literal integers or string literals)
in the REPORT definition.

A new feature of this release enables you to redefine all the values of the
OUTPUT section of a report in the START REPORT statement, so that the desti-
nation and dimensions of output from the report can be specified at runtime.

If you do not use START REPORT to specify these parameters, then the
OUTPUT section values (or default values, if the OUTPUT section omits any
specification) remain in effect, as in previous releases.
5-46 Informix Dynamic 4GL User Guide

Dynamic Configuration of Report Output
The syntax of START REPORT in 4GL 7.30 and Dynamic 4GL 3.0 is:

START REPORT report
[TO {

SCREEN |
PRINTER |
FILE {"file"|var} |
{"file"|var} |
PIPE [IN {FORM|LINE} MODE] {"program"|var} |
OUTPUT {"out"|var} [DESTINATION {"trg"|var}]
}

]
[WITH {

TOP OF PAGE = "string" |
PAGE LENGTH = n |
TOP MARGIN = n |
BOTTOM MARGIN = n |
LEFT MARGIN = n |
RIGHT MARGIN = n |
[,...]
}

]

Here n is an integer expression, and each instance of var is a 4GL program
variable whose logical content is the string at the left of the preceding pipe
(|) symbol.

Here out must be one of the following:

"SCREEN", "PRINTER", "FILE", "PIPE [IN {FORM|LINE} MODE]"

These out keywords are not case-sensitive.

Here trg is the name of a file or program to receive the report output from a
pipe. If out has the value SCREEN or PRINTER, then the DESTINATION clause
is not needed (and is ignored, if specified).

The WITH clause supports the TOP OF PAGE = "string" option, which
substitutes a page-eject string for repeated Linefeeds to complete the current
page of report output and begin the next page. See your printer documen-
tation for the appropriate string value. Only the first character in the string is
passed to the printer. (This feature can reduce the time required to print long
reports.)

Example:

START REPORT repname TO OUTPUT string1 DESTINATION string2
WITH TOP MARGIN = 2, TOP OF PAGE = "^L", PAGE LENGTH = 66
Using Non-Graphical Extensions to 4GL 5-47

New Built-In Operators
Here the caret (^) symbol specifies the CONTROL key; this is in contrast with
other 4GL features (for example, the ON KEY clause) that use "CONTROL-" as
the notation to reference the CONTROL key.

If the WITH clause appears, its values override any corresponding parameter
that were explicitly stated in the OUTPUT section of the REPORT definition, or
any default values.

An implication of this new feature is that any report can now use either top-
of-page character string processing or repeated blank lines to space to the
page, depending on what was specified when the report is started.

New Built-In Operators
This release supports a new string concatenation operator, resembling that of
the Informix dialect of SQL. It also supports a new synonym for the "="
relational operator, resembling the "==" operator of C.

String Concatenation Operator

In all releases of 4GL, the comma (,) symbol has concatenation semantics in
some contexts for lists of strings (as in LET, PREPARE, and PRINT statements).
4GL 7.30 introduces a double-pipe (||) concatenation operator that accepts
two values of simple data types as operands, and joins them to return a single
character-string value.

In the right-hand side of the LET statement, or in the argument list of a
function call, the concatenation operator can join two values of any simple
data type. It associates its operands from left to right. Thus, (a || b || c) and
((a || b) || c) are equivalent. Precedence of this operator is higher than LIKE,
MATCHES, or relational operators, but lower than the arithmetic operators.

If either operand is a NULL string, then the returned value is NULL, repre-
sented as a string of zero length. This is in contrast to how LET ignores NULL
values within comma-separated lists, unless every value in the list is NULL.
(The NULL and LET returns from a comma-separated list of NULL values is
represented as a single blank space.)

For example, if a and b are non-NULL strings, and c is NULL, then

LET x = a,b,c-- This assigns (a || b) to variable x.
LET y = a || b || c-- This assigns NULL to variable y.
5-48 Informix Dynamic 4GL User Guide

New Built-In Operators
In LET statements, you can choose between these two methods of treating
NULL values in concatenation by substituting || for comma if you want a
NULL string returned from any concatenation that includes a NULL operand.

In some contexts, only || can perform concatenation.

CALL myfunct (a || b, c)

is not equivalent to

CALL myfunct (a, b, c)

because comma is always a list separator symbol in function calls.

Concatenation with the || operator discards trailing whitespace from
operands of integer and fixed-point number data types, but not from
character or floating point data types. The CLIPPED operator of 4GL can
remove trailing blanks from values before concatenation in 4GL statements,
but TRIM must replace CLIPPED in preparable SQL statements (for Version 7.x
and later Informix databases).

Synonym for the Equality (=) Relational Operator

The CONSTRUCT statement and Boolean expressions of 4GL support
relational operators that can perform comparisons of two data values.

4GL 7.3 now supports "==" as a synonym for "=" (just as earlier releases have
supported "!=" as a synonym for the "<>" operator.

For example, the expressions in the two statement fragments:

IF x = y THEN GO TO :finario
IF x == y THEN GO TO :finario

are equivalent.
Using Non-Graphical Extensions to 4GL 5-49

New Syntax to Hide the Comment Line
New Syntax to Hide the Comment Line
By default, the last line of the current 4GL window is the Comment line,
which can display messages that the COMMENT attribute of a 4GL form
specifies. This is a reserved line, which is cleared when the user moves the
visual cursor to a new line of a screen form, so it is typically used to send
messages to the user, rather than for data entry or data display. In 4GL forms
that do not use the COMMENT attribute, the Comment line is unused space
on the screen.

4GL 7.30 introduces a new feature that enables you to conserve display space
within a 4GL window by hiding the Comment line. The new syntax that can
appear within the ATTRIBUTE clause of the OPEN WINDOW statement is:

COMMENT LINE OFF

This is supported by both 4GL 7.30 and by Dynamic 4GL 3.0. If this is
specified, then the Comment line is hidden for that 4GL window and cannot
display messages from the form specification, even if some fields of a form
that this window displays have the COMMENT attribute.

Dynamic 4GL can use a new syntax extension

COMMENT LINE = { n | var}

where n is a digit in the range from 0 to the number of lines in the 4GL
window, and var is an integer variable with the same range. The Dynamic
Dynamic 4GL specification

COMMENT LINE = 0

in the ATTRIBUTE clause of the OPEN WINDOW statement is logically equiv-
alent to the new 4GL 7.30 specification:

COMMENT LINE OFF
5-50 Informix Dynamic 4GL User Guide

Editing Multibyte Data in 4GL Forms
Editing Multibyte Data in 4GL Forms
4GL 7.20 introduced GLS, a locale-based feature for supporting the entry,
display, retrieval, and collation of strings that include non-ASCII characters,
as well as display formats for number, time, and currency data for various
languages and cultures besides those of the default (U.S. English) locale. 4GL
7.x supports the Informix locale files for most European and Asian
languages, including multibyte East Asian locales for Chinese, Japanese, and
Korean languages.

4GL does not, however, support languages that use right-to-left or bidirec-
tional text (such as Arabic, Farsi, Hebrew, or Urdu).

Additional details about GLS can be found in the Informix Guide to GLS
Functionality.

The following environment variables can be set to support non-default
character sets, and cultural conventions for the display of numeric, date, and
currency data values:

■ CLIENT_LOCALE

■ DBAPICODE

■ DB_LOCALE

■ DBNLS

■ GL_DATE

■ GL_DATETIME

■ LANG

■ SERVER_LOCALE

SQL identifiers that include non-ASCII characters that the locale of the
database supports can appear within SQL statements in 4GL source code,
provided that the locale of the 4GL client system also supports these non-
ASCII characters in its codeset.

4GL identifiers, data strings, and the values of CHAR, VARCHAR, and TEXT
variables, formal arguments, and returned values can include non-ASCII
characters that the current locale supports.
Using Non-Graphical Extensions to 4GL 5-51

Editing Multibyte Data in 4GL Forms
4GL forms can include locale-dependent characters as text, and fields can
support such characters in data entry and data display operations. For East-
Asian locales that support multibyte characters, this feature is new in 4GL
7.30. If a multibyte string requires more bytes of storage than the declared
size of a 4GL form field, or more than a segment of a field, then the string is
truncated from the right. Any partial character that might be created by this
truncation is replaced by whitespace.

In multibyte locales, the storage length (in bytes) can be longer than the
display length of the field in a form. For example, a form field that is declared
LIKE a CHAR(16) database column cannot display a string that consists of 16
multibyte characters because such a string occupies at least 32 bytes of
storage.

In locales whose codesets include multibyte characters, 4GL does not create
partial characters. In 4GL or SQL operations that attempt to divide a string
within a multibyte logical character, whitespace is substituted for any partial
character. Examples of operations in which whitespace automatically
replaces any partial characters include 4GL expressions that include the
substring ([]) operator, truncation of data strings when they are stored in
variables, and data entry into fields of 4GL forms in which the length (in
bytes) of the field is smaller than the length (in bytes) of the data string.

The following built-in functions and operators of 4GL can accept or return
locale-supported non-ASCII (and multibyte) characters, or can process
multibyte characters without creating partial characters:

■ CLIPPED operator

■ DOWNSHIFT()

■ LENGTH()

■ Substring ([]) operator

■ UPSHIFT()

■ WORDWRAP operator

In this release, however, the built-in functions FGL_GETENV() and
FGL_KEYVAL() cannot return multibyte characters. (They can return single-
byte non-ASCII characters that the client locale supports.)
5-52 Informix Dynamic 4GL User Guide

New Conditional Comments
In Japanese locales, WORDWRAP fields in 4GL forms and in output from
reports perform single-pass kinsoku processing, for characters that the locale
file lists as prohibited from appearing at the beginning or end of a line. If a
character that is prohibited from ending a line appears at the end of a line, it
is moved down to the beginning of the next line. A character that precedes
another that is prohibited from beginning a line can similarly be moved
down to the next line. (By single pass is meant that each line is tested only
once. Even if this process results in a line ending in a forbidden character, no
further kinsoku processing is performed.) The locale files must identify the
characters that are prohibited from beginning a line or prohibited from
ending a line.

Important: Dynamic 4GL requires Client SDK 2.30 to support these GLS features.

New Conditional Comments
In Dynamic 4GL, you can write:

--# CALL fgl_init4js()

The Dynamic 4GL compiler treats the '--#' as whitespace and ignores it,
compiling a call to the fgl_init4js() function. 4GL sees the '--' as a comment
indicator and treats the rest of the line as a comment.

4GL 7.30 introduces an analog to this Dynamic 4GL feature, providing a
notation that 4GL treats as whitespace and ignores, compiling what follows
as ordinary code, but Dynamic 4GL sees the line as a comment.

This is the notation:

--@

This allows the programmer to write:

--# OPTIONS HELP FILE "d4gl_help.42h" --Line is ignored by I-4GL
--@ OPTIONS HELP FILE "i4gl_help.iem" --Line is ignored by D-4GL

The previous two lines are the logical equivalent to the following logic:

--# IF TRUE THEN
--# OPTIONS HELP FILE "d4gl_help.42h"
--# ELSE

OPTIONS HELP FILE "i4gl_help.iem"
--# END IF

This is much more verbose and makes less clear what is intended.
Using Non-Graphical Extensions to 4GL 5-53

New Conditional Comments
Conditional comments are supported both in source (.4gl) files and in form
specification (.per) files. The following example shows a fragment of a form
specification that uses one attribute for the 4GL form compiler, and another
for the Dynamic 4GL form compiler:

ATTRIBUTES
f0 = FORMONLY.name, --#char_var ;
--@REVERSE ;

They are also valid within SQL statement blocks but not within the text of a
PREPARE statement.

These symbols are called conditional comment indicators because their effect
depends on whether you compile with the 4GL or Dynamic 4GL compiler.
Just as with other comment indicators, they have no special significance
within a quoted string.

Because the compilers treat a conditional comment as either whitespace or as
a comment, you cannot use both in the same line, as in this example:

CALL abc--#function()--@procedure()

Conditional comment indicators are treated as whitespace if the compiler
does not treat them as beginning a comment, so the previous example always
generates a compile-time syntax error, because neither 'CALL abc' (using 4GL)
nor 'CALL abc procedure()' (using Dynamic 4GL) is valid code. When a
conditional comment indicator is interpreted as beginning a comment, the
comment marker '--#' or '--@' terminates the previous keyword or symbol.

Because "--@" is a new syntax feature of 4GL 7.30, it is treated as a comment
symbol by all previous releases of the 4GL (and Dynamic 4GL) compilers, just
as "--#" is treated as a comment symbol in all 4GL releases.
5-54 Informix Dynamic 4GL User Guide

6
Chapter
Using Form Extensions to 4GL
In This Chapter . 6-3

Implementing List Boxes 6-4

Implementing Buttons. 6-6
Menu Buttons 6-6
Hot-Key Buttons 6-6

Editing fglprofile 6-7
Editing the .per File 6-7
Setting the KEY Field Attribute 6-8
Using 4GL Functions 6-8

Buttons in the Form 6-9

Implementing Bitmaps 6-11

Implementing Check Boxes and Radio Buttons 6-11
Check Box Syntax 6-11
Radio Button Syntax 6-12
Invoking a Key Code 6-13

Combo Fields . 6-14

Implementing Scrolling Fields 6-15

Creating Folder Tabs 6-16

6-2 Infor
mix Dynamic 4GL User Guide

In This Chapter
This chapter describes the 4GL language extensions that Dynamic 4GL added
and that you can add to the form-specification files. The following sections
describe the 4GL extensions for implementing these controls:

■ List boxes

■ Command buttons

■ Bitmaps

■ Check boxes

■ Radio buttons

■ Combo boxes

■ Scrolling fields

■ Folder tabs
Using Form Extensions to 4GL 6-3

Implementing List Boxes
Implementing List Boxes
Screen arrays in graphical mode are displayed with list box objects. The
following code generates output in graphical mode, as Figure 6-1 shows:

DATABASE formonly
SCREEN {

[f01] [f02]
[f01] [f02]
[f01] [f02]
[f01] [f02]
[f01] [f02]
[f01] [f02]
[f01] [f02]
[f01] [f02]
[f01] [f02]
[f01] [f02]

}
ATTRIBUTES
f01 = formonly.f01 type char;
f02 = formonly.f02 type char;
INSTRUCTIONS
SCREEN RECORD s_rec[10] (f01,f02):

Figure 6-1
Graphical Mode

Output
6-4 Informix Dynamic 4GL User Guide

Implementing List Boxes
If you want the fields to appear on individual lines, add the following string
in the attribute section of your fields in the form-specification file:

options="-nolist"

In the previous example, if you change the lines:

f01 = formonly.f01 type char;
f02 = formonly.f02 type char;

to match these:

f01 = formonly.f01 type char, options="-nolist";
f02 = formonly.f02 type char, options="-nolist";

you get the results that Figure 6-2 shows.

You can also make fields appear on individual lines by including the
following setting in your fglprofile file:

Resource.gui.workScreenPlace.nolist=1

Figure 6-2
Graphical Mode

Output with Fields
on Separate Lines
Using Form Extensions to 4GL 6-5

Implementing Buttons
This feature might be useful to keep the alignment of fields on forms. The list
box display type does not allow you to configure the colors of the object. The
nolist display type lets you control the color parameters.

Implementing Buttons
This section discusses extensions for menu buttons, hot-key buttons, and
in-form buttons.

Menu Buttons
The menu buttons created with the 4GL statements MENU … END MENU are
displayed as rows or columns of buttons. You can access these buttons by
using keyboard shortcuts, as with ASCII 4GL applications, or by clicking
them.

To choose the positioning of the button on the screen, use the Menu.style
resource in the fglprofile configuration file, as follows:

For more information about the fglprofile, see Chapter 5, “Using Non-
Graphical Extensions to 4GL,” and Appendix B, “Common Problems and
Workarounds.”

Hot-Key Buttons
Hot keys that you define in COMMAND KEY or ON KEY statements are
displayed in a separate frame located on the right side of the application.
These buttons automatically appear when activated.

To access hot keys, press the corresponding key with the ASCII version of the
application or click the button with the mouse.

Menu.style = 0 The menu is set on the top of the application window.

Menu.style = 1 The menu is set on the right frame of the application.
6-6 Informix Dynamic 4GL User Guide

Hot-Key Buttons
To edit the labels of hot-key buttons, use the following order of precedence,
listed from highest to lowest:

1. The KEY attributes in a field of a .per file. (You cannot change a label
with fgl_dialog_setkeylabel() if the same key attributes are present
for a special key.)

2. The fgl_dialog_setkeylabel() function

3. The KEYS section in a .per file

4. The fgl_setkeylabel function

5. The fglprofile file

Editing fglprofile

The $FGLDIR/etc/fglprofile configuration file contains a section where you
can define the label for each hot key. The name of this resource is:

key." key ".text = label

where key is the name of the key (F1, CONTROL-V, …) and label is the label to
use on the button.

For example, the following entry in fglprofile changes the default label of the
hot key F7 to the word Zoom:

key.f7.text = "Zoom"

The order of appearance of the hot key in the right frame is defined by the
key."key_name".order resource in fglprofile.

Editing the .per File

This method edits the KEYS section in the form-specification file (.per file). to
display the label of a hot-key button when the corresponding form is used.
For example:

--# KEYS
--# F1 = "HELP ON MASK"
--# F2 = "ZOOM"

The --# pattern is optional, but if specified, guarantees the compatibility of
your source code with INFORMIX-4GL.
Using Form Extensions to 4GL 6-7

Hot-Key Buttons
Setting the KEY Field Attribute

This method uses the KEY field attribute in a form-specification file to change
the label of hot-key buttons when the cursor is in the corresponding field. Use
the following syntax:

ATTRIBUTES
f001 = customer.customer_num,
 --# KEY F10 = "SEARCH",
 --# KEY F11 = "CLEAR",
 REVERSE;

In this example, when the cursor is in the field corresponding to the tag f001
of the form, the labels of the F10 and F11 hot key buttons will be SEARCH and
CLEAR.

Using 4GL Functions

This method uses calls to 4GL functions in your 4GL source-code modules.
These functions are divided into the following two categories:

■ Functions that execute during a dialog with the user; for example,
during INPUT, INPUT ARRAY, or CONSTRUCT.

■ Functions that are not specific to the current user dialog.

If you want to change a label for a specific user dialog, use the
fgl_dialog_setkeylabel() function. Use the following syntax:

fgl_dialog_setkeylabel("key", "label")

If you want to change the label outside a specific user dialog, you must do so
before the beginning of the dialog statement. Use the following syntax:

fgl_setkeylabel(hot_key_name, new_label)

or

fgl_keysetlabel (hot_key_name, new_label)

hot_key_name The name of the hot key to change the label

new_label The new label displayed on the hot-key button
6-8 Informix Dynamic 4GL User Guide

Buttons in the Form
The names of the keys are case sensitive. The names of the keyboard function
keys are in lowercase: f1, f2, f3, and so on. For example:

...
BEFORE INPUT
CALL FGL_SETKEYLABEL ("f4", "About")
INPUT BY NAME f01,f02

ON KEY (f4)
CALL DISPLAY_ABOUT()

END INPUT
...

The label of the f4 hot-key button displayed by the ON KEY statement will be
About. The user can click the About button displayed on the right side of the
application window or press F4 to execute the DISPLAY_ABOUT function
(undefined in this example).

With these methods, if you set the label to the empty string " " , the buttons
will either disappear from the application window or leave an empty button
in the key frame, depending on a resource in fglprofile.

An empty button does not react to mouse clicks. This behavior is defined in
the fglprofile configuration file with the following resource:

This feature does not influence the behavior of the application, however.
Even if a hot-key button does not appear, the user can execute the action
defined by an ON KEY statement by pressing the corresponding key on the
keyboard.

Buttons in the Form
Buttons can be added to the screen section of a form. To do so, add a field tag
to the screen section and add the widget and the config string in the attribute
definition of the tag. The widget parameter must be set to BUTTON and the
config parameter must be set to the name of the key sent to the application
when the button is pressed. The following code creates a form with two
buttons displayed at the bottom of the form.

gui.empty.button.visible = 1 The button remains visible but does
not react to mouse clicks. This is the
default value.

gui.empty.button.visible = 0 The button becomes invisible and
disappears.
Using Form Extensions to 4GL 6-9

Buttons in the Form
In a 4GL module, add the following lines:

.

.

.
OPEN WINDOW w AT 2,3 WITH FORM "button" ATTRIBUTE(BORDER)

DISPLAY "Insert/Overwrite" TO bt1
DISPLAY "Zoom" TO bt2

INPUT BY NAME a,b,c

DISPLAY "" TO bt1 # erases label and deactivates the button.
DISPLAY "" TO bt2 # erases label and deactivates the button.

Create this form-specification file, button.per:

DATABASE formonly
SCREEN {
Field1 [a]
Field2 [b]
Field3 [c]

[bt] [bt2]
}
ATTRIBUTES
a = formonly.a;
b = formonly.b;
c = formonly.c;
bt1 = formonly.bt1
--# , widget="BUTTON", config="Control-a"
;
bt2 = formonly.bt2
--# , widget="BUTTON", config="F1-a"
;
end
--#KEYS
--#"F1"=""

With this example, during the INPUT statement, you can click the two
buttons. The first one will send the CONTROL-A key. This key toggles the insert
and overwrite modes. The second button sends the F1 key.
6-10 Informix Dynamic 4GL User Guide

Implementing Bitmaps
Implementing Bitmaps
To add a picture to a form, create a field tag in the screen section of a form and
add the widget and config string to the attribute definition of the tag. In this
case, the widget parameter must be set to BMP and the config parameter
must be set to the name of the bitmap file to be displayed and to the name of
the key to send to the application when the bitmap is clicked.

The width of the field tag in the screen section of the form must be at least as
wide as the name of the bitmaps that will be used, or it will not be possible to
change them with the DISPLAY TO statement.

Implementing Check Boxes and Radio Buttons
You can use check boxes for making binary choices. Each check box controls
a single variable. Check boxes in a group are not mutually exclusive options.

Radio buttons provide a way to select one of several mutually exclusive
options. Several radio buttons work together to control a single variable.

In ASCII mode (with the FGLGUI environment variable set to 0), the radio
buttons and check boxes are displayed as standard Informix fields.

Check Box Syntax
In form-specification files, check boxes are defined in the same manner as
plain fields. But the attribute definition of the field has more options. In the
following example, two check boxes are displayed.
Using Form Extensions to 4GL 6-11

Radio Button Syntax
In the file check.per:

DATABASE FORMONLY
SCREEN {

 Check box 1: CheckBox 2:
[chk01] [chk02]

}
ATTRIBUTES
chk01 = formonly.chk01, default="str_on"
--# , widget="CHECK", config="str_on str_off str_lab"
;
chk02 = formonly.chk02, default="No"
--# , widget="CHECK", config="Yes No acknowledge"
;
end

The --# sequences are optional and are only designed to preserve compati-
bility with INFORMIX-4GL.

In the attribute section of the file, the widget option is set to CHECK if you
want to use check boxes.

The config option contains three parameters. The first two parameters are
respectively the values returned by the check box when it is activated and
deactivated. The third parameter is the label displayed at the right side of the
check box.

The check box is set to a null string if you do not specify a default value for it.

Important: The length of the string returned by an active check box must be at least
as long as the one returned when it is set to be inactive or the check box will behave
unpredictably.

Radio Button Syntax
The definition of radio buttons uses the same options as the definition of
check boxes. The following example displays frames that include three radio
buttons.
6-12 Informix Dynamic 4GL User Guide

Invoking a Key Code
In the file radio.per:

DATABASE formonly
screen {

 radiobutton:
 [rad001]

}
attributes

rad001 = formonly.rad001, default="str_one"
--# ,widget="RADIO", config="str_one lab_one str_two lab_two
str_three lab_three"
;
end

In order to use radio buttons, you have to set the widget attribute to RADIO.
The config option is built in the following way. The str_one string is returned
if the first radio button of the frame is selected. The str_two string is the value
returned for the second button. The lab_one string is the string used for the
label of the first button and lab_two for the second button.

The value returned by the radio button is a null string if no button is selected
in the frame. It is possible to define a default value for the radio button group.

Invoking a Key Code
You can send a single key instead of a string when you invoke a radio button
or check box. The option class=key must be added in the attribute section of
the declaration of the radio button or check box in the form file, as the
following example shows:

DATABASE FORMONLY
SCREEN
{
Key Check 1 : Key Radio 1 :
 [f05] [f08]
 [f06]
}
ATTRIBUTES
 f05=formonly.f05, class="key", widget="CHECK",
 config="F1 F6 {Check #1}";
 f06=formonly.f06, class="key", widget="CHECK",
 config="F2 F7 {Check #2}";
 f08=formonly.f08, class="key", widget="RADIO",

config="F11 {Radio #1} F12 {Radio #2}
 F13 {Radio #3}";
Using Form Extensions to 4GL 6-13

Combo Fields
In this example, the field f05 will send key F1 when activated and F6 when
deactivated. The three choices of the radio button f08 will send F11, F12, or
F13.

You can also activate or deactivate radio buttons and check boxes, but only
the one from the key class, in 4GL programs. In order to activate a check box
or radio button, use the following statement (replacing myButton with the
name of a check box or a radio button in the current form):

DISPLAY "!" TO myButton

And to deactivate it use:

DISPLAY "*" TO myButton

If you activate a default class radio button or check box type outside of an
input statement, it will appear checked but you will be unable to use it.

Combo Fields
The combo field object is an association between a classical field and a
bitmap (bmp field) on its left side. It is possible to give a value to the field or
to click the bitmap to send a specified key. The bmp fields do not require any
changes to the 4GL source code to be added.

The field definition has two more attribute parameters: widget and config.

The widget parameter should be set to FIELD_BMP to indicate the type of
field.
6-14 Informix Dynamic 4GL User Guide

Implementing Scrolling Fields
The config string is the name of the bitmap file with a .bmp extension and the
name of the key sent to the application when the bitmap is clicked. The
bitmap file must be in $FGLDIR/bmp or in $FGLDIR/toolbars. The default
values are $FGLDIR/toolbars/combo.bmp for the bitmap file name and F1 for
the key. The size of the bitmap is constant, so a large bitmap will be truncated.
For example:

DATABASE formonly
screen {

 bmp field:
 [bmf001]

}
attributes
bmf001 = formonly.bmp_field, widget="FIELD_BMP", config="combo.bmp
Control-q";
end

Implementing Scrolling Fields
A field shorter than the corresponding program variable can be scrolled
during input if the scroll attribute has been added to its definition in the form
file. For example:

■ In the .4gl file:
MAIN
DEFINE text CHAR(512)
OPEN WINDOW w1 AT 1,1 WITH FORM "demo1"
INPUT BY NAME text
CLOSE WINDOW w1
END MAIN

■ In the .per file:
SCREEN
{
 Short entry: [f001]
}
ATTRIBUTES
f001 = formonly.text type char
--#, scroll
;
END
INSTRUCTIONS
DELIMETERS " "
END
Using Form Extensions to 4GL 6-15

Creating Folder Tabs
This would allow scrolling within the field up to the full length of the
variable.

Creating Folder Tabs
Folder tabs allows you to create tabs that display different parts of a form. For
example, you might divide a form for entering information into three
subforms that you can display by clicking a folder tab.

Important: You do use an input statement on fields located on different subforms.

To use this feature, add more than one SCREEN section in a form. To set the
label in the folder tab, use the following syntax:

SCREEN TITLE "label"
{
...
}

with the label appearing as the name of the folder tab.

The following example of how to create folder tabs shows two files,
demo1.per and demo1.4gl. When you compile and run these files, the input
and input array buttons display a form as three subforms. The input is done
through three fields on the first two subforms and the input array is done on
the third subform. The code is as follows:
6-16 Informix Dynamic 4GL User Guide

Creating Folder Tabs
File demo1.per:

DATABASE formonly
SCREEN TITLE "screen 1/3"
{

 field 1 [f01]
 field 2 [f02]

}
SCREEN TITLE "Screen 2/3"
{

 field 3 [f03]

}
SCREEN TITLE "Screen 3/3"
{

 Array row 1 [a01]
 Array row 2 [a01]
 Array row 3 [a01]
 Array row 4 [a01]

}
ATTRIBUTES
f01 = formonly.f01;
f02 = formonly.f02;
f03 = formonly.f03;
a01 = formonly.a01;

INSTRUCTIONS
screen record scr_arr[4] (a01)
Using Form Extensions to 4GL 6-17

Creating Folder Tabs
File demo1.4gl:

MAIN

DEFINE f01,f02,f03 CHAR(20)

DEFINE arr ARRAY[10] OF RECORD
 a01 CHAR(10)
END RECORD

OPEN FORM frm1 from "demo1"

MENU "Folder tabs"
 COMMAND "Input"
 OPEN WINDOW w1 AT 3,1 WITH 25 rows, 80 columns
 DISPLAY FORM frm1
 INPUT BY NAME f01, f02, f03
 CLOSE FORM frm1
 CLOSE WINDOW w1
 COMMAND "Input array"
 OPEN WINDOW w1 AT 3,1 WITH 25 rows, 80 columns
 DISPLAY FORM frm1
 INPUT ARRAY arr from scr_arr.*
 CLOSE FORM frm1
 CLOSE WINDOW w1
 COMMAND "Exit"
 EXIT MENU
END MENU
END MAIN
6-18 Informix Dynamic 4GL User Guide

7
Chapter
Using Graphical Extensions to
4GL
In This Chapter . 7-3

Display Extensions 7-3
Calling Dynamic 4GL Libraries 7-3
Checking for UNIX or Windows 7-4
Checking for Windows Client Mode 7-5

Window-Management Functions 7-6
Setting the Default Size of a Window 7-6
Setting the Title of a Window 7-7
Retrieving Information from a Field. 7-8
Retrieving Information from an Application Window 7-8
Setting the Active Window 7-10
Closing a Window. 7-10

Creating Toolbars and Toolbar Icons 7-11

Creating Dialog Boxes 7-12
Creating an Interactive Message Box 7-12
Displaying an Interactive Message Box 7-14
Formatting Text in a Message Box 7-15
Entering a Field Value into a Message Box 7-16

Using Drawing Extensions 7-17
Mouse-Management Functions 7-18

Returning a Value After a Left Mouse Click. 7-18
Returning a Value After a Right Mouse Click 7-18
Remove Key Binding 7-19

Defining the Drawing Area 7-19
Initializing the Drawing Function 7-20
Selecting a Drawing Area 7-20

7-2 Infor
Specifying the Text Insertion Point 7-21
Setting Line Width 7-22
Clearing the Draw Function 7-22
Drawing Rectangles 7-23
Setting the Fill Color 7-23
Drawing an Oval 7-23
Drawing a Circle 7-24
Drawing a Line 7-24
Drawing Text 7-25
Drawing an Arc. 7-25
Drawing a Polygon 7-26
mix Dynamic 4GL User Guide

In This Chapter
This chapter describes functions that can be used to enhance the graphical
user interface (GUI). The topics include:

■ Display extensions

■ Window-management functions

■ Mouse-management functions

■ Toolbars

■ Dialog boxes

■ Drawing extensions

Display Extensions
This section describes an initialization function and other functions that
relate to display environments.

Calling Dynamic 4GL Libraries
The following function is required at the beginning of every 4GL program
that calls functions from the Dynamic 4GL libraries:

For example:

--#CALL fgl_init4js()

Syntax fgl_init4js()
Using Graphical Extensions to 4GL 7-3

Checking for UNIX or Windows
Checking for UNIX or Windows
The following function returns the current value of the FGLGUI environment
variable:

For example:

MAIN
--#CALL fgl_init4js()
IF fgl_fglgui() = 1 THEN
 CALL fgl_winmessage ("Welcome from server to WTK",
 "nice to meet you!!", "info")
ELSE
 OPEN WINDOW w1 AT 1,1 WITH 5 ROWS, 50 COLUMNS ATTRIBUTE (BORDER)
 DISPLAY "Welcome from server to ASCII " AT 2, 5
 SLEEP 3
 CLOSE WINDOW w1
END IF
END MAIN

Compile this program with the Dynamic 4GL compiler and execute it.
Figure 7-1 shows the message that appears if you are in ASCII mode for UNIX.

Tip: If you execute this program with UNIX, be sure to put a SLEEP statement after
DISPLAY so that you can see the message.

Syntax fgl_fglgui()

Returns TRUE if the program is run under a GUI
FALSE if the program is run on an ASCII terminal

Figure 7-1
Welcome Message

in ASCII Mode
7-4 Informix Dynamic 4GL User Guide

Checking for Windows Client Mode
Figure 7-2 shows the message that appears if you are in graphical mode.

Checking for Windows Client Mode
The following function tells you if the graphical front end used is the
Windows client:

The following program tests whether you are using the GUI and, if so,
whether you are using Windows:

MAIN
IF fgl_fglgui() = 1 THEN
 IF fgl_wtkclient() = 1 THEN

CALL fgl_winmessage ("Welcome from server to WTK",
 "Pleased to meet you!!", "stop")

 ELSE
CALL fgl_winmessage (" Welcome from server to X",

 "Nice to meet you!!", "info")
 END IF
ELSE
 OPEN WINDOW w1 AT 1,1 WITH 5 ROWS, 50 COLUMNS WITH ATTRIBUTE
(BORDER)
 DISPLAY "Welcome from server to ASCII " AT 2, 5
 SLEEP 1
 CLOSE WINDOW w1
END IF
END MAIN

Figure 7-2
Welcome Message
in Graphical Mode

Syntax fgl_wtkclient()

Returns TRUE if displayed on a Windows client;
FALSE if displayed on an X-Windows client or ASCII terminal
Using Graphical Extensions to 4GL 7-5

Window-Management Functions
After compiling and executing the program, you have the two windows as in
the fgl_fglgui examples. Figure 7-3 shows the message that you see if you are
using an X-Windows client.

Window-Management Functions
This section describes the extensions that help you manage application
windowing.

Setting the Default Size of a Window
The following function allows you to change the default size of the program
window.

Figure 7-3
Welcome Message
in Windows Client

Mode

Syntax fgl_setsize (nblines, nbcols)

nblines Integer that specifies the new number of lines

nbcols Integer that specifies the new number of columns
7-6 Informix Dynamic 4GL User Guide

Setting the Title of a Window
Example:

…
IF answer = "yes" THEN

IF reduce_flag THEN
--#CALL fgl_setsize(25,80) #normal size

ELSE
--#CALL fgl_setsize(10,50) #reduced size
LET reduce_flag = TRUE #reduced size

END IF
END IF
…

Setting the Title of a Window
The following function allows you to set the title of a program window:

The default title is the program name. To change this title, use the fgl_settitle
function.

Example:

MAIN
DEFINE title CHAR(100),
 flag SMALLINT
 --#CALL fgl_init4js()
 --#CALL fgl_settitle("hello world")
 LET flag = TRUE
 WHILE flag
 PROMPT "Give the new title: " FOR title
 --#CALL fgl_settitle(title)
 IF TITLE = "#" THEN
 LET flag = FALSE
 END IF
 END WHILE
END MAIN

With this example, enter the new title of the window into the title field and
then press ENTER. To quit this program, press the interrupt key.

Syntax fgl_settitle(mytitle)

mytitle String or variable with the new title
Using Graphical Extensions to 4GL 7-7

Retrieving Information from a Field
Retrieving Information from a Field
The following function allows you to receive information about the currently
prompted field during a dialog function:

Example:

…
INPUT by name f01

BEFORE INPUT
LET LGT = fgl_formfield_getoption("length")
MESSAGE "No more than ",LGT," charaters"

END INPUT
…

Retrieving Information from an Application Window
The following function returns information about the current application
window:

Syntax call fgl_formfield_getoption (" option ") returning var

or

call formfield::getoption(" option ") returning var

option x Returns the X position of current field in the form

y Returns the Y position of current field in the form

length Returns the length of current field in the form

var The variable containing the return value of the function

Syntax call fgl_window_getoption (" option ") returning var

option name Returns the name of the current window

x Returns the X position of the current window

y Returns the Y position of the current window

width Returns the width of the current window

height Returns the height of the current window
7-8 Informix Dynamic 4GL User Guide

Retrieving Information from an Application Window
border Returns TRUE if the current window has a border;
otherwise returns FALSE

formline Returns the form line of the current window

menuline Returns the menu line of the current window

commentline Returns the comment line of the current window

messageline Returns the message line of the current window

errorline Returns the error line of the current window

insertkey Returns the value of insertkey (value as with the
fgl_getkey function)

deletekey Returns the value of deletekey (value as with the
fgl_getkey function)

nextkey Returns the value of nextkey (value as with the
fgl_getkey function)

previouskey Returns the value of previouskey (value as with
the fgl_getkey function)

acceptkey Returns the value of acceptkey (value as with the
fgl_getkey function)

helpkey Returns the value of helpkey (value as with the
fgl_getkey function)

abortkey Returns the value of abortkey (value as with the
fgl_getkey function)

inputwrap Returns TRUE if the inputwrap option is on;
otherwise returns FALSE

fieldorder Returns TRUE if the fieldorder option is
constraint; otherwise returns FALSE

var The variable that contains the return value of the function
Using Graphical Extensions to 4GL 7-9

Setting the Active Window
Example:

MAIN
DEFINE VAR CHAR(20)
CALL fgl_init4js()
OPEN WINDOW hello AT 2,2 WITH 20 ROWS, 50 COLUMNS
ATTRIBUTES(BORDER)
LET var = fgl_window_getoption(" name")
DISPLAY "You are in window ",var AT 5,5
SLEEP 3
CLOSE WINDOW hello
END MAIN

Setting the Active Window
The following function makes the specified window, named name, the active
window:

Example:

Call fgl_window_current("hello")

Closing a Window
The following function closes the window named name:

Example:

CALL fgl_window_close(" name")

Syntax fgl_window_current(" name")

name Specifies the name of a window

Syntax fgl_window_close(" name")

name Specifies the name of a window
7-10 Informix Dynamic 4GL User Guide

Creating Toolbars and Toolbar Icons
Creating Toolbars and Toolbar Icons
You can add a toolbar that contains icons that represents hot keys to the top
of the screen. A corresponding help tip appears when the mouse pointer is
positioned over an icon.

To enable tool bar functionality, add the following line to the fglprofile file:

gui.toolBar.visible = 1

To disable toolbar functionality, add the following line:

gui.toolBar.visible = 0

After this line, you might have groups of lines, with each group corre-
sponding to an icon on the toolbar:

gui.toolBar. order .text = " keytext "
gui.toolBar. order .bmp = " bmpname"
gui.toolBar. order .hideButton = {0|1}

The following table describes the elements in this example.

Element Description

order The position of the icon in the toolbar.

keytext Text as specified in the label name or the
key value of a hot key the presence of which
will activate the icon on the toolbar.

bmpname Name of the bitmap file to use for the icon.
The file bmpname.bmp must exist in
directory $FGLDIR/toolbars when using
X11 or in directory $WTKDIR/bmp of the
Windows client when using Windows,
where $WTKDIR is the installation
directory of the 4GL server.

gui.toolBar. order .hideButton =
{0|1}

Indicates if the hot-key button
corresponding to the icon must remain in
the hot-key button frame in addition to the
icon (hideButton = 0) or if it must
disappear (hideButton =1).
Using Graphical Extensions to 4GL 7-11

Creating Dialog Boxes
The elements keytext and bmpname can be replaced by fglSeparator, in which
case there will be an additional space at the position specified by order,
allowing you to separate different icon groups.

The following example shows a fglprofile configuration file:

gui.ToolBar.enabled = 1
gui.ToolBar.1.text = "OK"
gui.ToolBar.1.bmp = "exclam"
gui.ToolBar.1.hideButton = 1
gui.ToolBar.2.text = "Interrupt"
gui.ToolBar.2.bmp = "stop"
gui.ToolBar.2.hidebutton = 1
gui.ToolBar.3.text = "fglSeparator"
gui.ToolBar.3.bmp = "fglSeparator"
gui.ToolBar.4.text = "Help"
gui.ToolBar.4.bmp = "ques"
gui.ToolBar.4.hideButton = 1

This configuration file generates a toolbar with three icons. The first icon is
active in dialog boxes where the accept key is active. The second icon sends
an interrupt signal to the application. The third icon, separated slightly from
the others, is active when help is present.

Creating Dialog Boxes
This section describes the extensions that affect dialog boxes.

Creating an Interactive Message Box
The following function displays an interactive box in a separate window with
all possible answers in a menu:

Syntax fgl_winbutton (title, text, default, buttons, icon,
danger)

title Title of the box

text Text of the question (\n stands for new line)
7-12 Informix Dynamic 4GL User Guide

Creating an Interactive Message Box
You can put anything in the definition of a button, subject to the following
rules:

■ If you declare a button with a sentence as the label, you cannot put
spaces between each word. Otherwise, one button will be created for
each word.

■ You can declare a maximum of 7 buttons with 10 characters each per
call.

default Default button selected

buttons List of values separated by the pipe character (|)

icon Name of the icon to be used in the dialog box
Figure 7-4 shows possible message icon selections.

Figure 7-4
Message Icons

danger Number of the warning item: a skull with crossbones will
appear each time the pointer enters the corresponding button
(on X11 only)

Possible Configuration

Info Exclamation Question Stop
Using Graphical Extensions to 4GL 7-13

Displaying an Interactive Message Box
Displaying an Interactive Message Box
The following function opens a dialog box with all possible answers in a
menu:

Syntax fgl_winquestion (title, text, default_value,
possible_values, icon, danger)

title Title of the dialog box

text Text of the question (\n stands for new line)

default_value Answer on which the focus has to be positioned

possible_values List of values separated by the pipe character (|)
Figure 7-5 shows sample message values.

Figure 7-5
Message Values

Possible Configuration

French German English

Ok or “” Ok or “” Ok or “”

Oui|Non|Interrompre Ja|Nein|Unterbrechen Yes|No|Cancel

Oui|Non Ja|Nein Yes|No

Ok|Interrompre
or
Ok|Annuler

Ok|Unterbrechen Ok|Cancel
or
Ok|Interrupt

Abandon|Repeter|Ignorer Abbrechen|Wiederholen|
Übergehen

Abort|Retry|
Ignore

Repeter|Interrompre Wiederholen|Unterbrechen Retry|Cancel
7-14 Informix Dynamic 4GL User Guide

Formatting Text in a Message Box
The following program shows you how to use the fgl_winquestion function:

MAIN
DEFINE answer CHAR(100)
--#CALL fgl_init4js()
--#LET answer = fgl_winquestion ("Title of the dialog box",
"Question Text", "Yes", "Yes|No|Cancel", "question",1)
END MAIN

This code produces the dialog box that Figure 7-6 shows.

This function replaces the typical PROMPT...FOR CHAR loop.

Formatting Text in a Message Box
The following function formats a message and presents it in a separate
window:.

icon Name of the icon to be used in the dialog box

danger Number of the warning item: a skull with crossbones will appear
each time the pointer enters the corresponding button (on X11 only)

Returns Text of the chosen answer

Figure 7-6
Dialog Box

Syntax fgl_winmessage (title, text, icon)

title Title of the message box

text Text of the message

icon Name of the icon to be used in the message box
Using Graphical Extensions to 4GL 7-15

Entering a Field Value into a Message Box
This function displays a message box with an OK button. For example:

MAIN
--#CALL fgl_init4js()
--#CALL fgl_winmessage("Title of the message", "Text or variable", "info")
END MAIN

This code produces the message box that Figure 7-7 shows.

Entering a Field Value into a Message Box
The following function displays a dialog box with a field that accepts a value:

Figure 7-7
Message Box

Syntax fgl_winprompt (x, y, text, default, length, type)

x, y Position of the prompt window

text Text of the question

default Not used currently

length Length of the entry

type Type of variable:

0 CHAR

1 SMALLINT

2 INTEGER

Returns Entered value
7-16 Informix Dynamic 4GL User Guide

Using Drawing Extensions
The following example shows how to use this function:

MAIN
DEFINE name CHAR(10)
--#CALL fgl_init4js()
--#CALL fgl_winprompt(5, 2, "Give me your name please", "", 10, 0)
returning name
--#CALL fgl_winmessage("Answer", name, "info")
END MAIN

This code produces the dialog box that Figure 7-8 shows.

Using Drawing Extensions
A set of new functions allows you to draw simple shapes. You will be able to
insert lines, rectangles, ovals, circles, texts, arcs, and polygons in a defined
area. You will also be able to bind a keystroke with the right or left click of the
mouse on any of the items in the drawing.

Figure 7-8
Dialog Box with

Entry Field
Using Graphical Extensions to 4GL 7-17

Mouse-Management Functions
Mouse-Management Functions
Before you begin drawing, you might want to specify the behavior of your
mouse. To manage mouse behavior, use the following functions.

Returning a Value After a Left Mouse Click

To define a key to be returned when you click the left mouse button, use the
following function:

This function defines a key to be returned when you click the specified item
with the left mouse button. For example:

CALL drawbuttonleft(num_item,"F4")

Returning a Value After a Right Mouse Click

To define a key to be returned when you click the right mouse button, use the
following function:

For example:

CALL drawbuttonright(num_item, "Control-c")

Syntax drawbuttonleft(noit, key)

noit INTEGER Item number returned by the function creating the object.

key CHAR(xx) The name of the key to be returned when you click an
item with the left mouse button.

Returns None

Syntax drawbuttonright(noit, key)

noit INTEGER Item number returned by the function creating the object

key CHAR(xx) The name of the key to be returned when you click an
item with the right mouse button

Returns None
7-18 Informix Dynamic 4GL User Guide

Defining the Drawing Area
Remove Key Binding

The following function removes all key binding on an item:

For example:

CALL drawclearbutton(num_item)

Defining the Drawing Area
The drawing area is defined in the same way as a screen array, as the
following example shows.

In the file draw2.per:

DATABASE FORMONLY
SCREEN {

Enter the percentage of blue.
The rest will be filled with green.
 BLUE [f01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]
[c01]

}
ATTRIBUTES
f01 = formonly.blue;
c01 = formonly.draw,widget="Canvas";

The only difference is in the attributes section of the form. You must add the
option widget="Canvas" (the "Canvas" string is case sensitive).

Syntax: drawclearbutton(noit)

noit INTEGER Item number returned by the function creating the object

Returns None
Using Graphical Extensions to 4GL 7-19

Initializing the Drawing Function
Initializing the Drawing Function
The following function is the initialization function:

To use drawings in a 4GL program, insert the following line at the beginning
of your program, before the first display open statement:

CALL drawinit()

This function loads the graphical add-on to your client computer. If you call
this function after you open the form that contains the canvas, you will
encounter the following problem. The calls of the canvas functions will
produce no results the first time that you run your application after starting
the client daemon.

Selecting a Drawing Area
The following function selects an area in which to draw:

After a window that contains a form with one or more drawing areas is
opened, select the area in which you want to draw. All the drawing areas
have fixed resolutions of 1000 by 1000 points. The 0,0 coordinate of the area
is at the lower left corner, and the 1000,1000 coordinate is at the upper right
corner. For example:

CALL drawselect("draw")

Syntax drawinit()

Returns None

Syntax drawselect(field_name)

field_tag CHAR(xx) Field name in which you want to draw

Returns None
7-20 Informix Dynamic 4GL User Guide

Selecting a Drawing Color
Selecting a Drawing Color
The following function specifies the drawing color:

This function sets the fill color for all drawings. This function must be set
before the drawing function. The color will remain active until another color
is chosen. The color name list is located in the file named rgb.txt, located in
the $FGLDIR/desi/etc/ directory on UNIX and in the desi\etc\ subdirectory
of the Windows front-end installation directory. For example:

CALL drawfillcolor("red")

Specifying the Text Insertion Point
The following function specifies the insertion point for the text:

Use drawAnchor() to specify the insertion point for the text before using the
function drawtext. For example:

CALL drawanchor("n")

Syntax drawfillcolor(color)

color CHAR(xx) Name of the color

Returns None

Syntax drawanchor(pos)

pos CHAR(x) n Top of the text

e Right side

s Bottom side

w Left side

Returns None
Using Graphical Extensions to 4GL 7-21

Changing Line Colors
Changing Line Colors
The following function defines whether the color of the line can change:

By default, the lines take the color defined by the DrawFillColor function.

Example:

CALL disablecolorlines(1)

Setting Line Width
The following function specifies the width of the line:

You can set the width of the line before using the DrawLine function. For
example:

CALL drawlinewidth(2)

Clearing the Draw Function
The following function is the clear function:

Syntax disablecolorlines(colorLines)

colorLines INTEGER 0 The lines take the color defined by
DrawFillColor

1 The lines are always black

Returns None

Syntax drawlinewitdth(width)

width INTEGER Width of the line in pixels

Returns None

Syntax drawclear()

Returns None
7-22 Informix Dynamic 4GL User Guide

Drawing Rectangles
This function clears the drawing area specified by the drawselect function.
For example:

CALL drawclear()

Drawing Rectangles
The following function draws a rectangle by specifying the lower left corner
and the length:

Setting the Fill Color
The rectangle is filled with the color set using the function drawfillcolor.
For example:

CALL drawrectangle(500,400,120,110) RETURNING ret

Drawing an Oval
The following function draws an oval:

This function draws an oval in a bounding rectangle. The rectangle is defined
in the same way as with the drawrectangle function. The oval is filled with
the color set using the function drawfillcolor. For example:

CALL drawoval(500,400,150,100) RETURNING ret

Syntax drawrectangle(y,x,dx,dy)

y, x INTEGER Coordinate of the lower left corner

dx, dy INTEGER Length of the rectangle

Returns The item number of the rectangle in the canvas

Syntax drawoval(y,x,dy,dx)

y, x INTEGER Coordinate of the lower left corner

dy, dx INTEGER Length of the rectangle that contains the oval

Returns The item number of the oval in the canvas
Using Graphical Extensions to 4GL 7-23

Drawing a Circle
Drawing a Circle
The following function draws a circle:

This function draws a circle in a bounding square, specifying the lower left
corner of the square and the border length. The circle is filled with the color
set using the function drawfillcolor. For example:

CALL drawcircle(500,400,65) RETURNING ret

Drawing a Line
The following function draws a line:

This function draws a line from start point to end point using the
drawlinewidth function. The line is filled with the color set using the
function drawfillcolor. For example:

CALL drawline(500,400,600,500) RETURNING ret

Syntax drawcircle(y,x,r)

y, x INTEGER The lower left corner of the bounding square that
contains the circle

r INTEGER The border length (equivalently, the diameter)

Returns The item number of the circle in the canvas

Syntax drawline(y,x,dy,dx)

y, x INTEGER Coordinate of the first point of the line

dy, dx INTEGER Coordinate of the last point of the line

Returns The item number of the line in the canvas
7-24 Informix Dynamic 4GL User Guide

Drawing Text
Drawing Text
The following function draws text:

This function draws the specified string at the specified coordinate. Use the
drawanchor function to define the insertion point of the text. For example:

CALL drawtext(500,400, "Hello world!!!") RETURNING ret

Drawing an Arc
The following function draws an arc:

This function draws an arc of a circle bounded by a square. You can specify
the lower left corner of the square, its border length, the start angle of the arc
in degrees, and the span of the arc in degrees. The line is filled with the color
set using the function drawfillcolor. For example:

CALL drawarc(500,400,100,12,25) RETURNING ret

Syntax drawtext(y,x,t)

y, x INTEGER The starting point of the text

t CHAR(xx) The string to draw from the starting point

Returns The item number of the text in the canvas

Syntax drawarc(y,x,d,start,arc)

y, x INTEGER The coordinate of the lower left corner

d INTEGER The border length

start INTEGER The start angle

arc INTEGER The span of the arc

Returns The item number of the arc in the canvas
Using Graphical Extensions to 4GL 7-25

Drawing a Polygon
Drawing a Polygon
The following function draws a polygon:

This function draws a filled polygon defined by the list of points. The list
must contain at least three points. To separate points, use spaces rather than
commas. For example:

CALL drawpolygon("120 150 200 150 400 430") RETURNING ret

Syntax drawpolygon(list)

list CHAR(xx) List of coordinates

Returns The item number of the polygon in the canvas
7-26 Informix Dynamic 4GL User Guide

8
Chapter
Configuring the Dynamic 4GL
Compiler
In This Chapter . 8-3

Configuring Dynamic 4GL 8-3
Runtime Configuration File 8-4
User Configuration File 8-4
Program Configuration File 8-4

General Configuration Settings. 8-5

Runtime Configuration Settings 8-6
General Settings 8-6
Graphical Daemon Autostart 8-9
UNIX Settings 8-10
Microsoft Windows Settings 8-11

License Configuration Settings 8-14
General Settings 8-14
UNIX Settings 8-16

GUI Settings . 8-17
General GUI Settings 8-17
Menu GUI Settings 8-19

Status Bar Settings 8-36

Memory Mapping Settings 8-37

Local Editing Settings 8-38

Cut, Copy, and Paste Feature Settings 8-39

8-2 Infor
mix Dynamic 4GL User Guide

In This Chapter
This chapter describes all the settings available in the configuration file. For
each setting, this chapter provides a description, possible values, and an
example of the syntax. The configuration file has the following sections:

■ Configuring Dynamic 4GL

■ General configuration file settings

■ Runtime configuration settings

■ License configuration settings

■ GUI settings

■ Status Bar settings

■ Memory mapping settings

■ Local editing settings

■ Cut, copy, and paste feature settings

Configuring Dynamic 4GL
You can control the behavior of the Dynamic 4GL compiler with the following
three configuration files:

■ Runtime configuration file

■ User configuration file

■ Program configuration file
Configuring the Dynamic 4GL Compiler 8-3

Runtime Configuration File
Runtime Configuration File
The main configuration file, fglprofile, is located in the $FGLDIR/etc
directory. This configuration file is loaded first and is loaded each time you
run an application.

User Configuration File
The user configuration file is specified by the FGLPROFILE environment
variable. If this environment variable is set in the environment of the current
user, the corresponding file is loaded after the fglprofile file. Entries defined
in the two files are set to the value defined by the last loaded configuration
file.

Program Configuration File
The program configuration file is located in the directory defined in one of
the two previous configuration files with the entry named fglrun.default. (It
is usually in the $FGLDIR/defaults directory.) Use this configuration file to
control program-specific behavior.
8-4 Informix Dynamic 4GL User Guide

General Configuration Settings
General Configuration Settings
This section describes the settings for the general configuration section of the
configuration file.

fglrun.interface

fglrun.scriptname

Description Specifies which interface configuration file the graphical
daemon should use. This file must be located in the
$FGLDIR/etc/ directory.

Do not change this value.

Value Resource filename

Default fgl2c.res

Syntax fglrun.interface="fgl2c.res"

Description Specifies which Tcl/Tk script is loaded when you execute the
first 4GL program after the graphical daemon is started. It will
search in the $FGLDIR/etc/ directory.

Do not change this value.

Value Tcl/Tk script file

Default fgl2c.tcl

Syntax fglrun.scriptname="fgl2c.tcl"
Configuring the Dynamic 4GL Compiler 8-5

fglrun.defaults
fglrun.defaults

Runtime Configuration Settings
This section describes the settings that affect runtime configuration.

General Settings
This section describes the general settings for the runtime configuration
section of the configuration file.

fglrun.arrayIgnoreRangeError

Description Specifies in which directory the program-specific configuration
files will be searched.

Value Complete path to the specific configuration files

Default $FGLDIR/defaults

Syntax fglrun.defaults="$FGLDIR/defaults/"

Description Ignores range control in arrays. If this variable is set to 1,
if x is an array, x[-1] gives no error but NULL. If this
variable is set to 0, x[-1] gives error –1326.

Value 0 or 1

Default 0

Syntax fglrun.arrayIgnoreRangeError=1

Recommendation Set to 1
8-6 Informix Dynamic 4GL User Guide

General Settings
dialog.fieldOrder

report.aggregateZero

gui.chartable

Description Determines whether the intermediate event triggers
(AFTER/BEFORE FIELD/ROWS) are to be executed or not when
moving from one field to another using the mouse. If set to 1,
the intermediate event triggers are executed. If set to 0, the
intermediate event triggers are not executed.

Value 0 or 1

Default 1

Syntax dialog.fieldorder=0

Description Determines the value to be returned by report aggregate
functions (avg, sum, ...) when the result is NULL.

Value 0 returns NULL
1 returns ZERO

Default 0

Syntax report.aggregateZero=0

Description Defines a conversion file to be used for characters under GUI. It
will be searched in the $FGLDIR/etc/ directory. You can create a
file with the mkchartab utility (see Appendix D).

Value The path from the $FGLDIR directory to the filter file

Default None

Syntax gui.chartable="iso/ansinogr"
Configuring the Dynamic 4GL Compiler 8-7

General Settings
fglrun.cursor.global

fglrun.ix6

fglrun.warning.logfile

Description With a 7.x Informix database, you can choose the scope range
for cursors at runtime. By default, the scope is local to the
module (as in INFORMIX-4GL 4.x).

Value 0 for local scope
1 for global scope

Default 0

Syntax fglrun.cursor.global=0

Description Commands the P-code runner (fglrun) to act like
INFORMIX-4GL 6.x. For more information, see Chapter 6,
“Using Form Extensions to 4GL.”

Value 0 to react like INFORMIX-4GL 4.x
1 to react like INFORMIX-4GL 6.x

Default 0

Syntax fglrun.ix6=0

Description Specifies if warnings are written to an error log file.

Value Specify 0 if you do not want warnings written to an error log
file

Specify 1 if you want warnings written to an error log file

Syntax fglrun.warning.logfile=0
8-8 Informix Dynamic 4GL User Guide

Graphical Daemon Autostart
Graphical Daemon Autostart
This section describes the settings that control the startup of the graphical
daemon.

fglrun.server.cmd

fglrun.server.number

fglrun.server.x

Description Specifies the command used to start the GUI daemon (fglX11d).

Value Command to start the graphical daemon

Default fglX11d –A for UNIX systems
fglsserv for Windows

Syntax fglrun.server.cmd="fglsserv"

Description Specifies the maximum number of graphical servers to
autostart.

Default 100

Syntax fglrun.server.number=50

Description With X11, Citrix Winframe, and Microsoft Terminal Server
client computers, it is possible to autostart the graphical
daemon on the server when a 4GL program is executed.

If FGLSERVER is defined, values specified in it will be used
first. The variable DISPLAY (or WINSTATIONNAME for
Winframe) determines which number of the daemon to use.

Value The client name and port number

Default None

Syntax fglrun.server.1="client:0, client:0.0"
Configuring the Dynamic 4GL Compiler 8-9

UNIX Settings
UNIX Settings
This section describes the settings specific to UNIX configurations.

fglrun.signalOOB

Description To send the interrupt signal to the server from the client, OOB
data is sent over the network. On some UNIX systems, the
number of the OOB data might be different from the default
used by Dynamic 4GL. In this case, you can use this resource to
test the signal number and then, when identified, to specify it.

Value 0 receive the default signal when an OOB signal is sent to the
program

-1 test the signal received when an OOB signal is sent to the
program

>0 receive a value when an OOB signal is sent to the program

Default 0

Syntax fglrun.signalOOB=0
8-10 Informix Dynamic 4GL User Guide

Microsoft Windows Settings
Microsoft Windows Settings
This section describes the settings specific to Windows configurations.

fglrun.box.error

fglrun.cmd.winnt

fglrun.cmd.win95

Description Specifies the type of error redirection to use. You can use this
only with a network drive solution.

Value 0 to display a Windows dialog box

1 to put the error on the stderr

Default 0

Syntax fglrun.box.error=0

Description Specifies the shell command to run for the RUN WITHOUT
WAITING statement on Windows NT.

A trailing space is required after the command.

Value Name of the command to execute

Default cmd /c

Syntax fglrun.cmd.winnt="cmd /c "

Description Shell command to perform the RUN WITHOUT WAITING
command on Windows 95.

A trailing space is required after the command.

Value Name of the command to execute

Default start /m

Syntax fglrun.cmd.win95="start /m "
Configuring the Dynamic 4GL Compiler 8-11

Microsoft Windows Settings

K

fglrun.remote.envvar

fglrun.database.listvar

Description In Windows, specifies the name of the variable used to
distinguish a remote connection from a network drive solution.
If the runner finds this variable on Windows NT, it will export
the following two environment variables to the database:

INFORMIXSERVICE (default turbo)
INFORMIXPROTOCOL (default olsoctcp)

Value Name of the variable to distinguish remote connection from
network drive

Default REMOTEADDRESS

Syntax fglrun.remote.envvar="REMOTEADDRESS"

Description This variable must be set on Windows NT computers using
Informix 7.2x database servers. It contains the list of all Infor-
mix variables. On Windows NT, those variables will be
exported to the database environment, not to the process envi-
ronment and not to the child processes.

Value The complete list of Informix variables

Default "CC8BITLEVEL COLLCHAR CONRETRY CONTIME DBANSIWARN
DBDATE DBLANG DBMONEY DBNLS DBPATH DBTEMP DBTIME
DELIMIDENT ESQLMF FET_BUFF_SIZE GL_DATE GL_DATETIME
INFORMIXDIR INFORMIXSERVER INFORMIXSQLHOSTS LANG
LC_COLLATE LC_CTYPE LC_MONETARY LC_NUMERIC LC_TIME
DBALSBC DBAPICODE DBASCIIBC DBCENTURY DBCODESET
DBCONNECT DBCSCONV DBCSOVERRIDE DBCSWIDTH DBFLTMS
DBMONEYSCALE DBSS2 DBSS3"
8-12 Informix Dynamic 4GL User Guide

Microsoft Windows Settings
nt.withoutoob

fglrun.setenv.o

fglrun.defaultenv.x

Description Determines if your Windows NT server uses the OOB (out of
band) mechanism to simulate the interrupt signal over the
network.

Value 0 use OOB

1 do not use OOB

Default 0

Syntax nt.withoutoob=0

Description Sets an environment variable to a specific value even if the
variable is already defined. For each environment variable,
increment the value of x by 1, to create distinct resource names.

Value Name and value of the environment variable to set

Default None

Syntax fglrun.setenv.0="INFORMIXDIR=c:\informix"

Description Specifies the default value of an environment variable. If a
variable is not found in the environment, this value will be
exported. You need to define at least INFORMIXDIR,
INFORMIXSQLHOSTS, INFORMIXSERVER, and
INFORMIXHOST (name of computer on which the Informix
database server runs) to use a remote session on Windows NT.
Increment the value of x by 1 to create distinct resource names.

Value Name and value of the environment variable to set

Default None

Syntax fglrun.defaultenv.0="INFORMIXSQLHOSTS=\\IXSERVER"
Configuring the Dynamic 4GL Compiler 8-13

License Configuration Settings
License Configuration Settings
This section describes the settings that affect licensing.

General Settings
This section describes the general settings for the license configuration
section of the configuration file.

fgllic.server

fgllic.service

Description Name of the computer that runs the license service program.
You must set this value to use the license server.

Value Name of the license server

Default None

Syntax fgllic.server="ixserver"

Description Service port number to use for communication between the
client and the license server.

Value Port number

Default 6399

Syntax fgllic.service="7000"
8-14 Informix Dynamic 4GL User Guide

General Settings
fgllic.local

fgllic.ping

Description Type of management of license data.

Value 0 if all data will be managed by the license server

1 if all data will be managed by the client

Default 0

Syntax fgllic.local=0

Description Time limit for the ping to detect the license server computer
by a client. If you use a distant network (by RTC or ISDN), you
must increase this value.

Value Time unit in milliseconds

Default 3000

Syntax fgllic.ping=5000
Configuring the Dynamic 4GL Compiler 8-15

UNIX Settings
UNIX Settings
This section describes settings that are specific to licensing on UNIX systems.

fgllic.check

fgllic.ps

Description Time period between two controls of the active user list.

Value Time period between check

Default Value stored in $FGLDIR/lock/data/fglcheck

Syntax fgllic.check="10"

Description Command giving the complete process list for a computer.

Value Command name and flag for listing all processes that run on a
computer

Default ps –ae

Syntax fgllic.ps="ps –ae"
8-16 Informix Dynamic 4GL User Guide

GUI Settings
GUI Settings
This section describes the settings that affect configuration of the GUI.

General GUI Settings
This section describes general GUI configuration settings.

gui.button.width

gui.useOOB.interrupt

Description Specifies the size, in characters, of the buttons located in the
right key button frame.

Value Number that indicates the button width, in characters

Default 15

Syntax gui.button.width = 20

Description Enables or disables the OOB signal mechanism. If the TCP/IP
stack of the client computer (especially Windows computers)
does not support the OOB mechanism you must disable it. In
this case, a second, slightly more time-consuming method is
used.

Value 0 disables the OOB signal on the TCP stack

1 enables the OOB signal on the TCP stack

Default 1

Syntax gui.useOOB.interrupt = 1
Configuring the Dynamic 4GL Compiler 8-17

General GUI Settings
Sleep.minTime

gui.key.radiocheck.invokeexit

Description Specifies the minimum time (in seconds) before the interrupt
button appears when you use the SLEEP statement.

Value Number of seconds

Default 3

Syntax Sleep.minTime = 5

Description Specifies the name of a key that if pressed when the focus is on
a radio button or a check box, invokes the currently selected
control and then immediately goes to the next field. It can also
be set to empty string ("").

Value Key name

Default "Return"

Syntax gui.key.radiocheck.invokeexit = "Return"
8-18 Informix Dynamic 4GL User Guide

Menu GUI Settings
Menu GUI Settings
This section describes the menu settings in the GUI section of the
configuration file.

Menu.style

gui.menu.timer

Description Specifies the display style for the menu.

Value 0 Create normal horizontal menu

1 Create a menu as a button in the right key button frame on
top of the hot-key buttons

Default 0

Syntax Menu.style=0

Description Time (in milliseconds) before the menu is disabled. Useful
when you switch between windows.

Value Number of milliseconds

Default 100

Syntax gui.menu.timer=100
Configuring the Dynamic 4GL Compiler 8-19

Toolbar GUI Settings
Toolbar GUI Settings
This section describes the toolbar settings in the GUI section of the
configuration file.

gui.toolBar.dir

gui.toolBar.visible

Description Specifies the name of the subdirectory from the $FGLDIR
directory for UNIX clients and from the Windows front-end
installation directory for Windows computers, where the
bitmap files that the toolbar uses are stored.

Value Subdirectory from $FGLDIR or WTK_DIR where the bitmap
files are stored

Default $FGLDIR/toolbars for UNIX clients

WTK_DIRECTORY\toolbars for Windows clients

Syntax gui.toolBar.dir="$FGLDIR/mytoolbars"

Description Enables the toolbar in your program.

Value 0 Disables the toolbar

1 Enables the toolbar

Default 0

Syntax gui.toolBar.visible = 0
8-20 Informix Dynamic 4GL User Guide

Toolbar GUI Settings
gui.toolBar.sizeY

gui.toolBar.sizeX

gui.toolBar.gapX

gui.toolBar.gapY

Description Specifies the height (in pixels) of the toolbar.

Value Number of pixels

Default 26

Syntax gui.toolBar.sizeY = 26

Description Specifies the width (in pixels) of a bitmap on the toolbar.

Value Number of pixels

Default 27

Syntax gui.toolBar.sizeX = 27

Description Specifies the horizontal space (in pixels) between the left border
of the screen and the first bitmap.

Value Number of pixels

Default 2

Syntax gui.toolBar.gapX=2

Description Specifies the vertical space (in pixels) between the top of the
screen and the bitmaps.

Value Number of pixels

Default 1

Syntax gui.toolBar.gapY=1
Configuring the Dynamic 4GL Compiler 8-21

Toolbar GUI Settings
gui.toolBar.sep

For the gui.toolBar.0.{bmp|comments|hideButton|key|text}

parameters, the 0 stands for the position of the icon in the toolbar. For each
new toolbar icon, you should increment this value by 1 to create unique
resource names.

gui.toolBar.0.bmp

gui.toolBar.0.comments

Description Specifies the size of a separator in the toolbar (pixel number =

gui.toolbar.sep * gui.toolBar.sizeX).

Value Number of pixels

Default "0.3"

Syntax gui.toolBar.sep = "0.3"

Description Name of the bitmap to be used, without file extension. The
specified icon must be stored in the gui.toolBar.dir directory.

Value Name of the bitmap file, without file extension

Default None

Syntax gui.toolBar.0.bmp = "quest"

Description Label of the key used in the toolbar. This value appears on the
active help tip.

Value String that contains the comment associated with the toolbar

Default None

Syntax gui.toolBar.0.comments = "help for this program"
8-22 Informix Dynamic 4GL User Guide

Toolbar GUI Settings
gui.toolBar.0.hideButton

gui.toolBar.0.key

gui.toolBar.0.text

Description Indicates if the key button corresponding to the icon must
disappear from the key button frame. This function does not
run with the horizontal menu.

Value 0 The key appears in the right frame

1 The key does not appear

Default 0

Syntax gui.toolBar.0.hideButton = 0

Description Name of the key used with this icon. This variable can be used
instead of gui.toolBar.O.text.

Value Key name associated with the toolbar

Default None

Syntax gui.toolBar.0.key = "F1"

Description Text associated with an icon on the toolbar. For menu command
text, this is only available with vertical menus.

Value Text associated with the icon

Default None

Syntax gui.toolBar.0.text = "Help"
Configuring the Dynamic 4GL Compiler 8-23

Toolbar GUI Settings
gui.bubbleHelp.enabled

gui.bubbleHelp.color

gui.bubbleHelp.disptime

Description Enables or disables tip help.

Value 0 Disables the tip

1 Enables it

Default 1

Syntax gui.bubbleHelp.enabled = 1

Description Specifies the background color of the help tip. You can also use
the configuration manager on the client side to configure it.

Value Name of the background color

Default "yellow"

Syntax gui.bubbleHelp.color = "yellow"

Description Specifies the time (in milliseconds) before the help tip appears
after the mouse passes over the icon.

Value Number of milliseconds

Default 3000

Syntax gui.bubbleHelp.disptime = 3000
8-24 Informix Dynamic 4GL User Guide

Screen GUI Settings
gui.bubbleHelp.offtime

Screen GUI Settings
This section describes the screen layout settings in the GUI section of the
configuration file.

gui.screen.size.x

gui.screen.size.y

Description Specifies the display time (in milliseconds) of the help tip.

Value Number of milliseconds

Default 1000

Syntax gui.bubbleHelp.offtime = 1000

Description Width of the screen in characters.

Value Number of characters

Default 80

Syntax gui.screen.size.x = 100

Description Height of the screen in characters.

Value Number of characters

Default 25

Syntax gui.screen.size.y = 40
Configuring the Dynamic 4GL Compiler 8-25

Screen GUI Settings
gui.screen.x

gui.screen.incrx

gui.screen.y

Description X position of an application window.

Value incr An incremented position (In this case, you have to
set gui.screen.incrx).

center Centers the window in the screen

number An absolute position, in characters

Default incr

Syntax gui.screen.x = "incr"

Description Specifies the increment for the display of the application
windows (in number characters) on the horizontal axis.

Value Number of characters

Default 3

Syntax gui.screen.incrx = 3

Description Y position of an application window.

Value incr An incremented position (In this case, you have to
set gui.screen.incry.)

center Centers the window in the screen

number An absolute position, in characters

Default: incr

Syntax gui.screen.y = "incr"
8-26 Informix Dynamic 4GL User Guide

Screen GUI Settings
gui.screen.incry

gui.screen.withwm

Description Specifies the increment for the display of the application
windows.

Value Number of characters

Default 2

Syntax gui.screen.incry = 3

Description Specifies if the window can be managed by the user.

Value 0 The main window will be ignored by the window manager.
The user will not be able to manipulate the window using
the normal window manager mechanisms like move and
resize.

1 Normal mode

Default 1

Syntax gui.screen.withwm = 0
Configuring the Dynamic 4GL Compiler 8-27

Key GUI Settings
Key GUI Settings
This section describes the key code settings in the GUI section of the
configuration file.

gui.key.add_function

gui.key.interrupt

gui.key.doubleClick.left

Description Specifies the offset for the code sent by SHIFT-F1. If the specified
value is 12 , the code sent for SHIFT-F1 is F13. If the specified
value is 10 , the code sent for SHIFT-F1 is F11.

Value Offset for the key code SHIFT-F1

Default 12

Syntax gui.key.add_function=12

Description Specifies the name of the interrupt key.

Value Name of the interrupt key

Default "Control-c"

Syntax gui.key.interrupt = "Delete"

Description Specifies the key code sent to the program when the left mouse
button is double-clicked.

Value Name of the key code to be sent to the program

Default "KEY_accept"

Syntax gui.key.doubleClick.left = "F30"
8-28 Informix Dynamic 4GL User Guide

Key GUI Settings
gui.key.click.right

gui.key.0.translate

Using the Key.tcl Script

This file is located in the $FGLDIR/etc directory. This script allows you to test
the value mapped to a key.

For the X11 Client, start the $FGLDIR/etc/key.tcl script with the following
UNIX statement:

$ owish -f key.tcl

For the Windows client:

1. Copy key.tcl script to your local drive.

2. Create a new icon.

For instance, copy the WTK server and edit the icon properties.

3. In the Command line, add the following:
c:\fgl2cusr\bin\wtk.exe -d -f <path_name>\key.tcl

where <path_name> is the path to key.tcl on your local drive.

Description Specifies the key code sent to the program when the right
mouse button is clicked.

Value Name of the key code to be sent

Default "F36"

Syntax gui.key.click.right = "F20"

Description Allows you to map one key to another. If a key is remapped to
an empty string, this disables the key. Use the file key.tcl to test
your keys.

Value Name of the key and the returned new value

Default None

Syntax gui.key.0.translate = "KP_Decimal comma"
Configuring the Dynamic 4GL Compiler 8-29

Key GUI Settings
After you start the key.tcl script, type the key or key combinations. Their
ASCII value and name are displayed in the debug window or in the terminal.

For example:

owish -f $FGLDIR/etc/key.tcl
Control_L 66
Control-c 56
Up 91
Down 92
Right 97
Left 87
Delete 84
KP_Enter 116
KP_3 111
KP_Decimal 112
Shift_R 65
Shift-exclam 10

key."key_name".text

The following table lists keys for specific actions.

Description The label, rather than the value, of a hot key to be displayed in
the right button frame.

Value Text for the specific key

Default key.help.text = Help
key.accept.text = OK
key.interrupt.text = Interrupt
key.delete.text = Delete
key.insert.text = Insert
key.return.text = Return
key.escape.text = Escape

Key Description

key.help.text Text for the help key

key.accept.text Text for the accept key

key.interrupt.text Text for the interrupt key

key.delete.text Text for the delete key
8-30 Informix Dynamic 4GL User Guide

Key GUI Settings
The following table lists the function keys.

key.insert.text Text for the insert key

key.return.text Text for the return key

key.escape.text Text for the escape key

key.prevpage.text Text for the previous page key

key.nextpage.text Text for the next page key

key.f1.text = F1 key.f13.text = F13

key.f2.text = F2 key.f14.text = F14

key.f3.text = F3 key.f15.text = F15

key.f4.text = F4 key.f16.text = F16

key.f5.text = F5 key.f17.text = F17

key.f6.text = F6 key.f18.text = F18

key.f7.text = F7 key.f19.text = F19

key.f8.text = F8 key.f20.text = F20

key.f9.text = F9 key.f21.text = F21

key.f10.text = F10 key.f22.text = F22

key.f11.text = F11 key.f23.text = F23

key.f12.text = F12 key.f24.text = F24

Key Description
Configuring the Dynamic 4GL Compiler 8-31

Key GUI Settings
The following table lists the Control modified keys.

key.control-a.text = Control-a key.control-n.text = Control-n

key.control-b.text = Control-b key.control-o.text = Control-o

key.control-c.text = Control-c key.control-p.text = Control-p

key.control-d.text = Control-d key.control-q.text = Control-q

key.control-e.text = Control-e key.control-r.text = Control-r

key.control-f.text = Control-f key.control-s.text = Control-s

key.control-g.text = Control-g key.control-t.text = Control-t

key.control-h.text = Control-h key.control-u.text = Control-u

key.control-i.text = Control-i key.control-v.text = Control-v

key.control-j.text = Control-j key.control-w.text = Control-w

key.control-k.text = Control-k key.control-x.text = Control-x

key.control-l.text = Control-l key.control-y.text = Control-y

key.control-m.text = Control-m key.control-z.text = Control-z
8-32 Informix Dynamic 4GL User Guide

Key GUI Settings
key."key_name".order

Description Specifies an order of appearance for keys. Each key has a
unique priority number. The key with the lowest priority
number is displayed on the top of the right key button frame.

Value Order number for the specified key name

Default help 100

accept 101

interrupt 102

insert 103

delete 104

return 105

f1 106

f2 107

. .

. .

. .

f69 174

control-a 175

control-b 176

. .

. .

. .

control-z 200

escape 202

Syntax key.f1.order = 1002
Configuring the Dynamic 4GL Compiler 8-33

Windows GUI Settings
"action_name".defKeys

Windows GUI Settings
This section describes the settings that affect the platform-specific
appearance of the user interface.

gui.mswindow.button

Description Specifies the list of the buttons displayed in the right key button
frame of dialog boxes. Each key name must be separated by a
comma.

Value List of default keys that appear in each dialog box

Default Menu.defKeys = " "

InputArray.defKeys = "accept,inter-
rupt,insert,delete"

Displa-
yArray.defKeys

= "accept,interrupt"

Input.defKeys = "accept,interrupt"

Construct.defKeys = "accept,interrupt"

Prompt.defKeys = "return"

Sleep.defKeys = "interrupt"

Getkey.defKeys = ""

Description Specifies whether the buttons should look like Windows
buttons or like X11 buttons.

Value 0 Use X11 style buttons

1 Use Windows style buttons

Default 0

Syntax gui.mswindow.button=0
8-34 Informix Dynamic 4GL User Guide

Windows GUI Settings
gui.mswindow.scrollbar

gui.user.font.choice

Description Specifies if the scrollbars should look like Windows scrollbars
or like X11 scrollbars.

Value 0 Use X11 style

1 Use Windows style

Default 0

Syntax gui.mswindow.scrollbar=0

Description Restricts the end user from changing the fonts of the
application with the Windows front-end menu at runtime.

Value 0 The user is able to change the fonts

1 The user cannot change the fonts (except by changing the
local.tcl file)

Default 1

Syntax gui.user.font.choice=1
Configuring the Dynamic 4GL Compiler 8-35

Status Bar Settings
Status Bar Settings
In a graphical client, the state of special keys can be displayed on the Status
Bar, including: Caps Lock, Num Lock, and Scroll Lock. For each key, you can
configure the text that appears on the Status Bar.

gui.statusBar.indicator.x.source

gui.statusBar.capsLock.text

Description Identifies the keys whose status appears on the status bar.

Value gui.statusBar.indicator.x.source="capsLock|numLock|
scrollLock" where x is a number between 1 and 3. Values are not
case sensitive.

Default gui.statusBar.indicator.1.source = "capsLock"

gui.statusBar.indicator.2.source = "numLock"

Syntax gui.statusBar.indicator.3.source = "scrollLock"

Description Text that appears on the Status Bar for the capsLock key.

Value Any text value.

Default "CAPS"

Syntax gui.statusBar.capsLock.text = "MAJ"
8-36 Informix Dynamic 4GL User Guide

gui.statusBar.numLock.text
gui.statusBar.numLock.text

gui.statusBar.scrollLock.text

Memory Mapping Settings
Memory mapping allows the runtime system to load a single version of a
P-code application and share it across multiple connections, significantly
reducing the memory required on the application server.

The fglmkrun shell script output tells you if the runners have been built with
or without the memory mapping emulation.

Tip: Some systems do not support memory mapping. In this instance, an emulation
of this feature is provided. For Windows NT, an emulation is always used.

Description Text that appears on the Status Bar for the numLock key.

Value Any text value.

Default "NUM"

Syntax gui.statusBar.numLock.text = "NUM"

Description Text that appears on the Status Bar for the scrollLock key.

Value Any text value.

Default "SCROLL"

Syntax gui.statusBar.scrollLock.text = "SCROLL"
Configuring the Dynamic 4GL Compiler 8-37

fglrun.mmapDisable
fglrun.mmapDisable

Local Editing Settings
The local editing feature reduces the communication between the server
(where the application is running) and the client (where the application
appears). Enabling this feature can reduce the network traffic and might
speed up applications.

gui.local.edit

Description Enables or disables memory mapping.

Value 1 Disable memory mapping

0 Enable memory mapping

Default 1

Syntax fglrun.mmapDisable = 1

Description Enables or disables local editing.

Value 1 Enable local editing

0 Disable local editing

Default 1

Syntax gui.local.edit = 1
8-38 Informix Dynamic 4GL User Guide

Cut, Copy, and Paste Feature Settings
Cut, Copy, and Paste Feature Settings
The cut, copy, and paste feature allows you to cut or copy a selected string
from one field to another in a 4GL graphical application. To use this feature,
the local editing feature should be enabled.

To enable this feature, edit the fglprofile file. The local editing feature should
be enabled with:

gui.local.edit = 1

Then you can choose the short cut keys for cut, copy, and paste with:

gui.key.copy = "Control-c" (default value is Control-Insert)
gui.key.paste= "Control-v" (default value is Shift-Insert)
gui.key.cut= "Control-x" (default value is Delete)

Warning: If you want to redefine gui.key.copy as "Control-C" , set
gui.key.interrupt to another value.

You can also define the message displayed when the user tries to use a local
editing feature in a not allowed field with:

gui.local.edit.error = "error string"

You can use the following keyboard equivalents:

■ key Shift-Left: add character at the left to the selection

■ key Shift-Right: add character at the right to the selection

■ key Shift-Home: add from current character to first character to the
selection

■ key Shift-End: add from current character to last character to the
selection
Configuring the Dynamic 4GL Compiler 8-39

Example
Example
The following code sample creates a 4GL application with two fields.

File demo.per:

database formonly
screen {

[f01]

[f02]

}
attributes
f01=formonly.f01;
f02=formonly.f02;

File demo.4gl:
MAIN
DEFINE f01, f02 CHAR(20)
OPEN WINDOW w1 AT 1,1 WITH FORM "demo"
MENU "Cut&Paste"
 COMMAND "Input"
 INPUT BY NAME f01, f02
 COMMAND "Exit"
 EXIT MENU
END MENU
END MAIN

Then compile and run this program.

With the Windows client you can:

■ Type text in the first field, select the text with the mouse or the shift
key plus any of the left, right, home, or end keys. Then copy or cut
the string with the assigned keys in the fglprofile. You can paste the
string into the second field or another Windows application.

■ Type text in one of the fields, select a few characters in this field and
type new characters. The new characters replace the whole selected
string.
8-40 Informix Dynamic 4GL User Guide

Example
With the X11 client, you can copy and paste between applications running the
same graphical daemon (that is, applications running with the same
FGLSERVER value) exactly like with the Windows client. However, to copy a
string to another X11 application (that is any Dynamic 4GL application
running with a different FGLSERVER value), you have to perform the
following steps:

■ Select the string you want to copy with the mouse

■ Select the 4GL application where you want to paste the string

■ Press the Copy key

■ Select the place where you want to paste the string and press the
Paste key.

The reason for this is that X11 does not offer a Windows-type clipboard.
Instead, Dynamic 4GL implements something similar to a Windows
Clipboard for each application running the same FGLSERVER value. When
you paste a string into a 4GL application, you need to put the string in the
corresponding clipboard for the application.
Configuring the Dynamic 4GL Compiler 8-41

9
Chapter
Using the Configuration
Manager
In This Chapter . 9-3

About the Configuration Manager 9-3

Starting the Configuration Manager 9-3
Starting on UNIX 9-4
Starting on Windows 9-4

Using the Dynamic 4GL Configuration Manager 9-4
File Menu. 9-5
Widget Menu 9-5

Label Object 9-5
Attributes Object 9-6
Colors Object 9-6
Button Object 9-7
Field Object. 9-8
Scrollbar Object 9-8
4GL-Windows Object 9-8
The Help Tip Object 9-9

The Help Menu. 9-9

How to Configure an Object with the Configuration Manager 9-10
Opening a File 9-10
Configuration Types 9-10

Color Choice 9-11
Radio Button Choice 9-11
Numeric Field 9-11

The Different Configurations 9-12
Color Configuration 9-12
Relief Configuration. 9-13
Border Width Configuration 9-13
Relief and Border Width Attributes 9-13
Attribute for a Specific Window. 9-14

9-2 Infor
mix Dynamic 4GL User Guide

In This Chapter
This chapter describes how to set properties for GUI controls on both UNIX
and Windows.

About the Configuration Manager
The Configuration Manager allows you to set the properties for any GUI
controls. It does this by updating a configuration file. By default, the config-
uration file is called $HOME/.fgl2crc on UNIX and locals.tcl on Windows.

The Configuration Manager also lets you manage these configuration files
and configure different graphical widgets. For instance, you can configure:

■ foreground and background colors

■ buttons

■ radio buttons

■ fields

Starting the Configuration Manager
You can use the Configuration Manager on UNIX or Windows NT. You
should start the Configuration Manager on the client side. This means that if
the compiler is installed on Unix, and you are using Windows clients (WTK),
you should start the configuration on Windows.
Using the Configuration Manager 9-3

Starting on UNIX
Starting on UNIX
The Configuration Manager is delivered with Dynamic 4GL. The file
generated is located in the home directory of the current user and is named
.fgl2crc.

To run the Configuration Manager, you must be in graphical mode (FGLGUI
= 1), and the DISPLAY environment variable must be set. Then enter the
confdesi, command at the shell prompt:

$ confdesi

Starting on Windows
The Configuration Manager is installed with the Windows client. The config-
uration file is located in the system directory %windir% (%WINDIR% for
Windows 95 and Windows 3.x) and is named locals.tcl.

To run the Configuration Manager, click the Informix-Config-Tools icon.

Using the Dynamic 4GL Configuration Manager
The program interface contains the following three menus:

■ File. This menu lets you manage configuration files. You can open,
save, and exit program functions.

■ Widget. This menu lets you configure the different graphical
widgets.

■ Help. This menu shows the current version of the configuration
tools.
9-4 Informix Dynamic 4GL User Guide

File Menu
File Menu
The File menu contains the following four items:

Widget Menu
This menu lists all graphical classes in Dynamic 4GL. Each name specifies
a generic class that contains several objects to configure.

Label Object

The Label object contains the configuration of the Label item:

For each object except for the object label, the background, border width, and
relief can be configured.

Open Opens an existing configuration file. By default, the
Configuration Manager offers the standard filename as the
default, depending on the operating system ($HOME/.fgl2crc
on UNIX and locals.tcl on Windows).

Save Saves changes to the configuration file using the default name.
The updated configuration file overwrites the old file.

Save to Saves the configuration file using the specified filename. The
default depends on the operating system. You can change it to
another filename.

Exit Exits the Configuration Manager.

Label Any label that is not generated, such as the message label.
Only the border width can be configured.

Message A label generated with a DISPLAY AT, MESSAGE, or COMMENT
statement.

Error A label generated with the ERROR statement.

Line Specifies the configuration of the separation line.
Using the Configuration Manager 9-5

Widget Menu
Attributes Object

The Attributes object allows you to configure the attributes used in the
DISPLAY {AT|TO}, INPUT, CONSTRUCT, and PROMPT statements.

You can specify a different configuration for each combination of attributes.
The relief option can only be applied to attribute combinations using BLINK.

Colors Object

The Colors object allows you to configure the standard eight colors (white,
black, yellow, magenta, red, cyan, green, and blue) that INFORMIX-4GL uses.
You assign a specific color to the standard colors.

The following rules apply in the source code:

■ With no attribute, the standard configuration of the widget object
will be used (for example, entry background, entry active
background).

■ With a color attribute, the color will be applied to the foreground.

■ With a color attribute and the REVERSE attribute, the color will be
applied to the background.

All Attributes Select all the attribute objects.

Individual
Attribute

Select each attribute object individually.

Foreground Color of characters and lines.

Background Color for windows, toolbars, and entries.
9-6 Informix Dynamic 4GL User Guide

Widget Menu
Button Object

The Button object allows you to configure the different types of buttons used
in Dynamic 4GL:

You can use two kinds of buttons: TK buttons or Windows buttons. Your
choice depends on the value of the gui.mswindow.button entry point in the
file $FGLDIR/etc/fglprofile. For more information about the fglprofile, see
Chapter 5, “Using Non-Graphical Extensions to 4GL,” and Appendix B,
“Common Problems and Workarounds.”

Menu button Button generated by a COMMAND statement within a MENU
statement. For this item, foreground, background, active
background, relief, border width, pad X, and pad Y can be
configured.

Horizontal
Title Menu

Button that contains the title set by the MENU statement. For
this object, background, relief, and border width can be
configured.

Key button Button generated by a COMMAND KEY or ON KEY statement
within a MENU, INPUT, PROMPT, or CONSTRUCT statement.
For this object, background, active background, relief, border
width, pad X, and pad Y can be configured.

Key BMP Button generated by the widget BMP form statement. For this
object, background, active background, border width, pad X,
and pad Y can be configured.

Radiobutton Button generated by the widget RADIO in the form. For this
object, background, disabled foreground, active background,
relief, border width, pad X, and pad Y can be configured.

Checkbutton Button generated by the widget CHECK in the form. For this
object, disabled foreground, background, active background,
relief, border width, pad X, and pad Y can be configured.
Using the Configuration Manager 9-7

Widget Menu
Field Object

The Field object allows you to configure the different field configurations
used in the screen form:

Scrollbar Object

The Scrollbar object allows you to configure the scrollbar used with the
screen record. For this object, foreground, background, and active
foreground can be configured.

4GL-Windows Object

This object allows you to configure the different window types used in
Dynamic 4GL:

Field Basic form item configuration. For this object, background,
entry active background, highlight relief, and border width
can be configured.

Screen record Form item using the [DISPLAY|INPUT] ARRAY statement. For
this item, background, right padding, active background,
highlight background, relief, and border width can be
configured.

Canvas Form item used with the canvas functions. For this object,
background, relief, and border width can be configured.

4GL Window General configuration for the window. For this object,
background, relief, and border width can be configured.

Screen This object configures the area of the window that runs the
4GL application. For this object, background, relief, and
border width can be configured.
9-8 Informix Dynamic 4GL User Guide

The Help Menu
If you specify a background color for Menu or Key window, you might not
see this color if you do not have enough space between the buttons.

The Help Tip Object

The Help tip object allows you to configure the bubble used with the toolbar.
For this item, you can configure background, foreground, pad X, and pad Y.

The Help Menu
This menu contains an About item, which specifies the current version of
Dynamic 4GL.

Menu window This object configures the area of the window in which the
menu is displayed. For this object, background, relief, and
border width can be configured.

Prompt window This object configures the area of the window that displays
PROMPT statements. For this object, background, relief,
and border width can be configured.

Keys window This object configures the area of the window where the
buttons corresponding to the INPUT, DISPLAY, ON KEY, and
COMMAND KEY statements are displayed. For this object,
background, relief, and border width can be configured.
Using the Configuration Manager 9-9

How to Configure an Object with the Configuration Manager
How to Configure an Object with the Configuration
Manager
The following sections describe how to use the Configuration Manager.

Opening a File
1. Choose the Open or New commands from the File menu commands

to open an existing configuration file or create a new configuration
file.

2. Choose an object from the Widget menu.

For more information on the different objects, see “Widget Menu” on
page 9-5.

3. Position the cursor on the object and click the right mouse button to
display a menu of configuration options.

4. Double-click a menu option to configure the object.

Configuration Types
This section describes the configuration types that control:

■ Color choice

■ Radio button styles

■ Numeric fields
9-10 Informix Dynamic 4GL User Guide

Configuration Types
Color Choice

The color choice allows you to choose a color from a palette; 20 to 40 colors
appear at the bottom of the Configuration Window. This type is used by the
following properties:

■ Background

■ Foreground

■ Active Bg

■ Active Fg

■ HighlightBg

Click the Prev and Next buttons to display additional color sets. Configu-
ration can be stopped either with the Done button, which applies the chosen
color to the selected item, or with the Cancel button. Use the Old button to
display the initial color.

Radio Button Choice

The radio button choice allows you to choose from among a set of values.
Clicking an option applies the chosen configuration to the displayed item.
This type is used by the following properties:

■ Borderwidth

■ Relief

Confirm your selections by clicking Done (or Cancel to cancel any
modifications).

Numeric Field

Enter a numeric value for this configuration type. This type is used by the
Height property.

Click Apply to show the effect of the value entered on the item displayed.
After you enter a value, click Done or Cancel.
Using the Configuration Manager 9-11

The Different Configurations
The Different Configurations
The following section describes different configurations.

Color Configuration

For each color configuration, the following objects appear:

You can specify the following color property settings:

Color object Displays the different colors

Prev Allows the display of the previous colors

Next Allows the display of the next colors

Done Accepts the new color configuration

Cancel Aborts the color configuration

Old Shows the previous configuration

Background Specifies the color of the normal background of an item.
This configuration is applied to all items.

Foreground Specifies the color of the normal foreground of an item.
This configuration is applied to Scrollbar and Color
objects.

Active Bg Specifies the background color choice of an item when it is
active. For example, when the pointer is positioned on a
button or a field when it is accessible for input. This config-
uration is applied to Button and Field objects.

Active Fg Specifies the foreground color choice of an item when it is
active. For example, a scrollbar when the pointer is posi-
tioned on it. This configuration is applied to Scrollbar and
Field objects.

HighlightBg Specifies the background color choice of an item when it is
highlighted, for example, the current line of a screen
record. This configuration is applied to Field objects.
9-12 Informix Dynamic 4GL User Guide

The Different Configurations
Relief Configuration

Specifies the item relief style: raised, sunken, flat, grooved, or ridged. This
configuration is applied to Button, Field, and Screen objects.

Border Width Configuration

Specifies the item border width style. Relief style does not appear if you select
a border with a width of zero. This configuration is applied to Label (except
the Label item), Button, Field, and Window objects.

Relief and Border Width Attributes

For every combination of the attributes BOLD, REVERSE, UNDERLINE, and
BLINK, a different relief, border width, and background color can be specified
by means of the menu option Attributes and the related submenus.

The following rules apply in the source code:

■ Color will apply systematically in the background for DISPLAY AT,
PROMPT, ERROR, MESSAGE, INPUT, and CONSTRUCT statements.

■ Relief and border width will apply systematically for DISPLAY AT
and PROMPT statements.

■ Relief and border width will apply only if the BLINK attribute is used
for ERROR, MESSAGE, INPUT, and CONSTRUCT statements.

The Attributes option can be useful for hiding specific input fields on the
screen:

■ With the ASCII interface, you can hide input fields by using the
following setting in the .per file:

DELIMITER= "";

■ With the GUI, you can hide input fields by defining an attribute
(BLINK for instance) with flat relief and the same color as the screen
background. To hide the field, use the following command:

DISPLAY TO fieldname ATTRIBUTE(BLINK)xx
Using the Configuration Manager 9-13

The Different Configurations
Attribute for a Specific Window

You can define background, relief, and color independently for all Screen
objects by means of the menu option Window.
9-14 Informix Dynamic 4GL User Guide

10
Chapter
Using the HTML Client
In This Chapter . 10-5

Web Deployment Architecture 10-6
Why Deploy on the Web? 10-7
HTML Client Limitations 10-8
HTML Client Enhancements 10-9

Installing the HTML Client 10-9
Installing on UNIX 10-9

Web Deployment Component Requirements 10-10
Components on the CD 10-10
Automatic Installation 10-10

Installing on Windows NT 10-13
Web Deployment Component Requirements 10-13
Location of Web Deployment Components 10-14
Running the Installation Program 10-14
Configuring Your System 10-15

How Web Deployment Works at Runtime 10-16
Supplying Your Own Headers and Footers 10-19
Disabling Password Display 10-19
Similarities Between a .per File and an .html File 10-19

Deploying a Sample Application 10-20
Screens. 10-22
Step 1: Creating a Dynamic 4GL Application 10-22
Step 2: Editing the Server Configuration File. 10-23

Examples of Configuration Settings 10-23
Results of Updating the Application Configuration File . . . 10-29

Step 3: Creating a Script to Initialize the Application 10-31
Step 4: Editing Your Client Configuration File 10-31

10-2 Inf
Step 5: Starting the HTML Server Process on UNIX 10-31
Step 6: Starting the Browser 10-32
Step 7: Using the Application 10-32
Step 8: Enhancing the Application 10-36
Creating Email and Web Site Links 10-36
Enhancing the Screen Files 10-37
Horizontal split 10-39
Table . 10-39
How Links Between Pages Work 10-40
HTML Emulation for Tables 10-41
Dynamic 4GL Features 10-41

Security Levels . 10-44
Default Security. 10-44
Recommendations for Enhancing Security 10-46

SSL . 10-46
Using a Filtering Router 10-46
Using a Firewall 10-46

Application, Web Server, and Database Security 10-46
Certificate Authority. 10-47

Preventing Security Problems 10-47

Configuring the Web Deployment Software 10-48

Configuration Settings in the fglcl.conf file 10-48
Location . 10-48
fglserver . 10-49
debug . 10-49
HTMLdebug . 10-50
Security . 10-50

Apache Web Server 10-50
Microsoft IIS/Personal Web Server 4.0 10-50

Security Through the Web Server. 10-51
Security Through the File System. 10-51
Summary . 10-52
ormix Dynamic 4GL User Guide

Configuring the appname.conf File 10-52
General Configuration Settings 10-52

Version . 10-53
Application Name 10-53
Client . 10-53
Service . 10-54
Server Number 10-54
Security Level 10-54
Time Out . 10-55
Maximum Tasks 10-55
Debug . 10-55

Pre and Post Messages 10-56
Header . 10-56
Footer . 10-56
Error . 10-57
Time-Out Message 10-57
Too Many Tasks 10-58
Normal Termination 10-59

Styles . 10-59
Button Down 10-60
Error Down 10-60
Menu as Link 10-60
Button Width 10-60
Menu Button Width 10-61
Emulate HTML 10-61
Image Path 10-61
Image Alternate Text 10-62
Image Border 10-62

Spawning . 10-63
Spawning Method 10-63
Program . 10-63
Runner Name 10-64
Runner Target 10-64
Runner Environment 10-65

Arrays . 10-65
Array as Button 10-66
Array Image 10-66

Troubleshooting the UNIX Installation. 10-66
Checking the HTML Client 10-66
Checking the HTML Server 10-68
Using the HTML Client 10-3

10-4 Inf
Manual Installation on UNIX 10-69
Extracting the Files 10-69
Installing the HTML Client on the Web Server 10-70
Installing the HTML Server on the Application Server 10-71
Installing the HTML Documentation on the Web Server 10-72
Installing the Example 10-72

Troubleshooting the Windows NT Installation 10-73
Checking the HTML Client 10-73
Checking the HTML Server. 10-73
ormix Dynamic 4GL User Guide

In This Chapter
This chapter describes how to deploy your Dynamic 4GL applications on a
Web server. In addition, you can enhance the appearance of the Dynamic 4GL
application for display with a Web browser.
Using the HTML Client 10-5

Web Deployment Architecture
Web Deployment Architecture
Figure 10-1 shows an overview of the Web deployment architecture.

The components shown in the figure are as follows:

1. Application Server: The server that runs the Dynamic 4GL program.
The term application server can refer either to a physical computer or
to the software process (fglrun) that runs the application.

2. Web Server: The server (httpd) that makes Web pages available to
browsers.

Figure 10-1
Web Deployment Architecture

HTML
Client

HTML
Client

Web Server (httpd)

Optional Firewalls

Internet

Unsecured
Side

Secured
Side

WTK/X11

ASCII Terminal

Local Intranet

Application Server (DVM)

HTML Server
4GL app

4GL app

4GL appDatabase**

** Database can also be network
access to a database server.

Programs (CGI binaries)

Normal content:
pages, images,
logos, and so
forth
10-6 Informix Dynamic 4GL User Guide

Why Deploy on the Web?
3. HTML Client: The HTML Client needs to run on the same computer
as the Web server.

4. WTK/X11: The Windows and X11 clients.

5. ASCII terminal: The ASCII client.

6. HTML Server: The HTML server (fglhtmld) typically runs on the
application server computer.

Important: While the entire architecture can exist on one computer, this is not a
typical Web deployment architecture.

Why Deploy on the Web?
Deploying your Dynamic 4GL applications on the Web offers the following
benefits:

■ No need for special programming

You can deploy your existing Dynamic 4GL applications on the Inter-
net or on an Intranet.

■ Preserve application appearance and functionality

You can run your Dynamic 4GL application on the Web as easily as
you can run it on your local computer.

■ Ability to configure the user interface

You can customize your application’s user interface to optimize it for
display on the Web.

■ Consistent application and database development

You can create applications for deployment in different environ-
ments using only one tool; you can reuse your existing application
logic; you can use the same database for all the environments in
which you deploy your application.

■ Security

You can take advantage of options such as firewalls and secure
socket layer (SSL) in addition to preserving the security features in
your original application.
Using the HTML Client 10-7

HTML Client Limitations
HTML Client Limitations
With Dynamic 4GL applications deployed on the Web, a Web limitation exists
that each form must be transmitted to the server. In addition, some limita-
tions are due to differences between 4GL and Dynamic 4GL, including:

■ With your ASCII 4GL, each character is analyzed as it is typed.

■ With local editing with WTK or X11, in Dynamic 4GL, each field is
analyzed on the display server and transmitted to the runner when
the field is completed.

When using the HTML client, you can expect the following effects:

■ Only the top-level window is visible and it appears as one HTML
page. Opening a submenu creates a new page, and only the infor-
mation displayed on the submenu is visible to the user.

■ The ON KEY actions do not work during input statements because
the Dynamic 4GL program does not see the individual keystrokes.
For the same reason, the COMMAND KEY options in menus also do
not work.

■ The BEFORE FIELD and AFTER FIELD clauses have no effect on the
input sequence. The Dynamic 4GL program receives all data after it
has been entered. This also means that NEXT FIELD has no effect, and
that displaying the results of lookup data has no effect, either. You
can use the BEFORE FIELD and AFTER FIELD clauses to validate the
entered data, but you have limits on what you can do when the data
is incorrect.

■ The SLEEP statement without interaction has no effect.

■ The PROMPT statement has no effect.
10-8 Informix Dynamic 4GL User Guide

HTML Client Enhancements
■ The DISPLAY, MESSAGE, and ERROR statements only take effect when
the user interacts with the program, such as when an INPUT, INPUT
ARRAY, DISPLAY ARRAY, CONSTRUCT, or MENU statement is used.
RUN WITHOUT WAITING can be used, but it cannot be used to start a
new Dynamic 4GL program that interacts with the user through the
Web browser. The user must decide to access the new program.

■ Forward and Back browser buttons do not work reliably. When using
the Forward and Back buttons, the HTML client has to go back to the
server for information. Unfortunately, Dynamic 4GL applications are
usually not written to go back to a screen form (unless you specifi-
cally accounted for this behavior when you wrote the Dynamic 4GL
code).

HTML Client Enhancements
You can add the following enhancements to your HTML client applications:

■ Customized page headers and footers HTML tags in the screen
portion of the form HTML tags as labels

■ HTML tags in your 4GL modules

Installing the HTML Client
The following two sections show how you can install components to deploy
your Dynamic 4GL applications on a Web server for UNIX and Windows NT.

Installing on UNIX
This section contains instructions for installing the Web deployment
components of Dynamic 4GL on your UNIX system.
Using the HTML Client 10-9

Installing on UNIX
Web Deployment Component Requirements

To install this software, you need to have installed (and have running):

■ Dynamic 4GL compiler with a valid license number

■ Web (HTTP) server

■ Browser with HTML form and table support (HTML, Version 3.2 or
higher).

These features are present in Microsoft Internet Explorer, Version 2.x
or higher and in Netscape Navigator, Version 2.x or higher.

Components on the CD

After installing the Dynamic 4GL software, the components for Web
deployment are available in the /CLIENTS/CLI-HTML directory on the CD.
The following subdirectories are present:

ALL
BIN
DOC
SELFEXTR
TLB

In addition, you will find the Bourne installation script, install.sh.

Automatic Installation

You can begin the automatic installation by executing either the self-
extracting package or the Bourne shell script.

Using the Self-Extracting Package

To use the self-extracting package and install all the Web deployment compo-
nents, enter:

sh html-all.sh -i

To install only the binaries and the example, enter:

sh html-bin.sh -i
10-10 Informix Dynamic 4GL User Guide

Installing on UNIX
To install only the documentation, enter:

sh html-doc.sh -i

Binaries are included for all supported UNIX systems.

Using the Shell Script

To use the shell script, you need the UNIX gzip and tar utilities.

First, extract the files. If you have the GNU version of the tar program, enter:

tar -xzf HTML.tgz

If you do not have the GNU version of tar, enter:

gunzip -c HTML.tgz | tar -xf -

Next, run the script. To install the complete package, enter:

sh install.sh all

To install only the binaries and the example, enter:

sh install.sh binary

To install only the documentation, enter:

sh install.sh doc

To access on-line help, enter:

sh install.sh -h
Using the HTML Client 10-11

Installing on UNIX
Responding to the Prompts

When you install the complete package, you are prompted to supply the
following information:

■ Whether to install the software on an application server, a Web
server, or both

If you choose both, the same software is installed in both places.

■ The path to your Dynamic 4GL compiler or runtime, as specified in
the setting for the FGLDIR environment variable

The installation adds binaries to the bin directory, configuration files
to the etc directory, and message files to the msg directory under
FGLDIR.

■ The IP address of the application server

The IP address is used to generate the client configuration file,
fglcl.conf.

■ The type of UNIX system on which the application server is running

The prompt displays the system that is assumed. If you select N, it
then displays codes for all available system types and allows you to
select one.

■ The root directory of the Web server

■ The CGI binaries directory of the Web server

■ The IP address of the Web server

■ The type of UNIX system on which the Web server is running

The prompt displays the system that is assumed. If you select N, it
then displays codes for all available system types and allows you to
select one.

■ Whether you want to install the documentation (HTML files that
describe how to configure and use the Web deployment
components)

■ The location of the HTML documentation root directory on the Web
server

The default is /var/httpd/htdocs.

The installation will not put the documentation in this directory but
will use the directory to propose a new one.
10-12 Informix Dynamic 4GL User Guide

Installing on Windows NT
■ The path to the directory in which to install the HTML
documentation

You must specify an absolute path.

The default is /var/httpd/htdocs/Cli-HTML.

■ Whether you want to install the example

■ The path to the directory in which to install the example

The default is $FGLDIR/cli-html/example.

■ Whether you want to install the release notes

■ The path to the directory in which to install the release notes

The default is $FGLDIR/cli-html/release.

Configuring Your System

Configuring your environment to run your applications from the browser
involves placing entries in the fglcl.conf file. This file is located in the cgi-bin
directory of the Web server. For detailed information on configuration, see
“Configuration Settings in the fglcl.conf file” on page 10-48.

Installing on Windows NT
This section provides directions to install the Web Deployment Components
on Windows NT.

Web Deployment Component Requirements

To install this software, you need to have installed (and have running):

■ Dynamic 4GL compiler with a valid license number

■ Web (HTTPD) server

■ Browser with HTTP form and table support (HTTP version 3.2 or
higher)

These features are present in Microsoft Internet Explorer, Version 2.x
or higher, and in Netscape Navigator, Version 2.x or higher.
Using the HTML Client 10-13

Installing on Windows NT
Location of Web Deployment Components

After installing the Dynamic 4GL software, the components for Web
deployment are available in the /CLIENTS/CLI-HTML directory on the CD.
The following subdirectories are present:

ALL
BIN
DOC
SELFEXTR
TLB

In addition, you will find the cli-html.exe file, which is the executable for the
installation program.

Running the Installation Program

To install the HTML client software on Windows NT, execute the file named
cli-html.exe.

During the installation, you are prompted to supply the following infor-
mation. For each prompt, respond and click Next to continue the installation.

■ A location for the HTML client (Choose Destination Location screen)

The default is C:\I4glsrv\Cli-HTML.

You can change the installation directory from the default, but make
sure you do not specify the same directory for the compiler. (Be sure
that the location specified by the %FGLDIR% environment variable is
not the location you give for Choose Destination Location.)

■ The type of installation (Setup Type screen):

❑ If you select Complete installation, all the components are
installed: HTML client, HTML server, documentation, and the
example.

❑ If you select Customized installation, you will be prompted for
the package to install in the Select Components screen. To
specify a package, check the check box next to it. The available
packages are described immediately after this list.

■ The program folder in which the startup icon resides

By default, the startup icon is created in the Programs section of the
Start menu.
10-14 Informix Dynamic 4GL User Guide

Installing on Windows NT
You must manually copy various components from the temporary directory
to the appropriate locations on the Web server and application server.

The procedures for copying the files are the same as those described for UNIX
systems, beginning with “Installing the HTML Client on the Web Server” on
page 10-70.

Available Packages

Customized installation lets you select any of the following packages:

■ HTML documentation. These files provide configuration and usage
information for deploying applications on the Web.

■ Client and server for Windows NT. These include HTML client and
HTML server only.

■ Client and server for AIX, HP-UX, IRIX, SCO, Sun Solaris (Sparc),
Unixware, Linux. This package is for UNIX systems that you can
download and configure manually. Download one of these options
for installation on a remote application server or Web server.

■ Example. For more information about the on-line example, see
“Installing the Example” on page 10-72. The information applies
equally to UNIX and Windows NT.

Configuring Your System

Configuring your environment to run your applications from the browser
involves placing entries in the fglcl.conf file. This file is located in the cgi-bin
directory of the Web server. For detailed information on configuration, see
“Configuration Settings in the fglcl.conf file” on page 10-48.
Using the HTML Client 10-15

How Web Deployment Works at Runtime
How Web Deployment Works at Runtime
Figure 10-2 shows an overview of the process followed by the HTML client,
HTML server, and Web server as your application starts.

Because Web deployment implies a client-server configuration, the following
terms are important to understand:

■ The application server runs the main Dynamic 4GL program.

■ The HTML client, fglcl, handles communication with the HTML
server.

■ The HTML server, fglhtmld, handles and controls the HTML client’s
runner.

■ The Web server is the location where the Web server daemon, named
httpd or ns-httpd, is running.

Important: This description omits network security details.

Figure 10-2
Web Deployment
Runtime Process
10-16 Informix Dynamic 4GL User Guide

How Web Deployment Works at Runtime
The steps are as follows:

1. The fglhtmld program (HTML server process) starts and listens to
the TCP/IP ports that you defined in the fglcl.conf configuration file.
The default port value is 6500.

This action can be done manually (for instance, on a development
system) or can be automated. If the action is automated, the imple-
mentation differs depending upon the operating system:

❑ UNIX: daemons are usually controlled by the inetd daemon. This
daemon controls and supervises the system and communication
daemons.

❑ Windows NT: such programs are services (as of version 1.00.xx,
the server is not a system service).

2. A browser issues a request to the Web server.

The Web server (also called httpd) communicates via TCP/IP. The
default port is usually 80.

3. The Web server detects whether the request has been made to a 4GL
program or a static HTML page.

If the request is made to a 4GL application, the Web server will create
an instance of the HTML client (fglcl).

4. The HTML client can now contact and fetch information from the
Web server.

The behavior of the HTML client is defined according to the HTML cli-
ent’s configuration file and the argument given by the Web server.

Communication between the client and the server is through sockets.

5. If this is a new request, the HTML server creates a new instance of
fglrun (the application server process).

If this is a continuation of a previous process, it sends the data to the
application server handling this browser client. In either case, a new
Web page is created from the output of the application server.

6. The HTML server sends a message to the new application server
process and receives a reply.
Using the HTML Client 10-17

Enhancing the Application Interface
7. The HTML server processes the message from the application server
process.

Communication between the server, the HTML server (fglhtmld),
and the application server process (fglrun) is done with anonymous
pipes.

8. The HTML server sends the Web page to the client.

9. The HTML client sends the Web page to the Web server.

10. The page is then sent to the browser in the same way as a normal
HTML page.

Communication between the Web server and the browser uses the
HTTP protocol.

11. The application server process receives information from the HTML
server (fglhtmld) that terminates it (the program ends, or the user
exits the program).

12. The server receives termination information from the application
server process and sends the normal termination page to the client.

13. The client sends this page to the Web server, which sends it to the
browser in the same way as a normal HTML page.

14. The session ends.

Enhancing the Application Interface
The Web deployment software provides mechanisms to enhance the
appearance of your applications for display in a Web browser.

You can improve the appearance of your application in the following ways:

■ Use your own page frames in the header and footer.

■ Enhance your screens by inserting HTML tags in your .per files.

■ Modify the application itself to improve its appearance.
10-18 Informix Dynamic 4GL User Guide

Supplying Your Own Headers and Footers
Supplying Your Own Headers and Footers
Standard page headers and footers are generated by default; however, you
can supply your own headers and footers. The Dynamic 4GL HTML server
will load the header and footer from the configuration file.

For example, you can add a corporate-style page frame with logo,
background, title, standard references to the home-page and other
information.

HTML Tags
You can use standard HTML tags in your applications. In addition, you can
represent tables using HTML emulation.

Disabling Password Display
To design your interface, you can use the new tag “Password”. Use the
class=“Password” parameter in the .per file to disable the display of
passwords in your application. The parameter generates the HTML tag
<INPUT type=password ... >.

Using the “Password” tag, you can disable the display of the user’s password
(the password is replaced by asterisk characters). Include the following code
in the .per file:

f005 = customer.password,class="Password",invisible,not
null,required;

The following tag is generated:

<INPUT TYPE="password" NAME="Ef005_11" SIZE=15 VALUE="">

Similarities Between a .per File and an .html File
A .per file is a screen description file for 4GL. An .html file is a screen and
resource description file for any Web browser. Both file types are in ASCII
format.
Using the HTML Client 10-19

Deploying a Sample Application
The following table summarizes the differences between the two types of
files.

Deploying a Sample Application
This section uses a simple Internet phonebook application to illustrate the
steps required to deploy your Dynamic 4GL application on the Web. This
section assumes the following facts:

■ Dynamic 4GL is installed.

■ You understand the operation of fglcl and fglhtmld.

■ You know the location of the configuration files.

■ You have a basic knowledge of HTML.

.per File .html File

User interface is done through screen. User interface is done through pages.

A field can be either dependent on a
database or completely independent.

A field is independent of any data
source.

A form might or might not depend on a
table.

A page does not depend on any table.

Forms are defined by non-proportional
ASCII characters.

Pages are defined by proportional
characters and special HTML tags.

International characters are quite
difficult to manage.

All international characters are a
sequence of ASCII characters. For
example, “é” is represented by
“é”.

Forms are not expandable without
modification of the form compiler.

HTML is expandable through new tags
that can be interpreted by specific
software (Web form compiler, browser,
and so forth).

There is a notion of forms in HTML. An HTML form is contained in a page. A
page can contain more than one HTML
form. An HTML form contains several
fields, buttons, and widgets.
10-20 Informix Dynamic 4GL User Guide

Deploying a Sample Application
The example covers the following steps:

1. Creating your Dynamic 4GL application.

2. Editing your server configuration file.

3. Creating a script to initialize the application.

4. Editing your client configuration file.

5. Starting the HTML server daemon.

6. Starting the browser.

7. Using the application from within the browser.

8. Enhancing the application to optimize it for Web use.

The application contains the following modules (.4gl):

■ browse: Handles browsing in companies and contacts. It uses simple
DISPLAY ARRAYS.

■ formgen: Creates the forms shown in the application.

■ globals: Contains the variables that must be global to a project or set
of projects.

■ init: Where initialization takes place. In this application, it is used for
key (button) mapping.

■ main: Handles simple initialization and menu generation.

■ new: Creates new companies and contacts.

■ show: Displays the complete information list of companies and
contacts. It is also used to edit and delete companies and contacts.

■ tools: A library module that contains SuperUser(), a function that
checks the super user’s login name and password. In this version,
only a basic authentication scheme is used. Login and password are
hard coded in the source code (and thus cannot be changed easily).
Using the HTML Client 10-21

Screens
Screens
A screen file has the extension .per. The following screens are used in the
application:

■ fcompany: Includes company information.

■ fcontact: Includes contact information.

■ flcomp: Displays a list of companies through a screen record that
contains the company’s unique id, name, telephone number, fax
number, and email address.

■ flctct: Lists some entries of the contact such as unique id, name,
telephone number, fax number, and email address.

The contact’s name is the result of a concatenation of a title (Mr., Ms.,
and so forth) and the first, middle, last names, and a suffix.

The screen also has a field for selecting and displaying the com-
pany’s name.

■ fpasswd: Fetches the user name and password.

Step 1: Creating a Dynamic 4GL Application
The first step is to create a 4GL application and then recompile it with
Dynamic 4GL. For information on creating a 4GL application, refer to your
4GL documentation.

The following 4GL application has been created for you. This application
helps you to manage company and sales contact information. This appli-
cation allows users to:

■ browse companies.

■ browse contacts.

■ edit and add companies.

■ edit and add contacts.

■ remove companies and contacts with privileged access.
10-22 Informix Dynamic 4GL User Guide

Step 2: Editing the Server Configuration File
Step 2: Editing the Server Configuration File
The UNIX phonebook.conf file contains the entries for the sample
application:

appName="phonebook"
client="fgld.exe"
defaultProgram="./start"
service="6500"
serverNumber=96
emulateHTML=1

■ appName: Creates the link between each page.

■ client: The name of the client that you are using. In this case,
combining appName with client will give you this call:
fglcl?phonebook.

■ defaultProgram: The script used to initialize the program. This start
script is described in step 3.

■ service: The base port number.

■ serverNumber: The offset from the base port (6500) used to create the
final port number. For example, this file specifies port 6596.

■ emulateHTML: Instructs the server to emulate HTML automatically.

Examples of Configuration Settings

This section describes updates that you can make to the appname.conf file.
Using the HTML Client 10-23

Step 2: Editing the Server Configuration File
The following example shows the General Features section of the configu-
ration file for the phonebook example. The file is named phonebook.conf.

General features
#####################################

Version of the configuration script
version="0.94.2a"

Application Name
appName="phonebook"

Script name in the /cgi-bin/ directory
fglcl for Unix
fglcl.exe for Unix / Windows NT
client="fglcl.exe"

Service-name to register the daemon
service="6500"

The offset from server-name-port
serverNumber=96

Security Level
securityLevel=1

Expirations-Time for Application in seconds
timeOut=1200

Maximum tasks (default : -1)
maxTasks=10

Debug level 0-none 1-verbose 2-no demonize (foreground)
debug=0
10-24 Informix Dynamic 4GL User Guide

Step 2: Editing the Server Configuration File
Styles Configuration

To change the appearance of the application in the browser, you can edit the
Configuration of Styles section in the appname.conf file. For example,
the phonebook.conf file has these values:

Configuration of Styles
#########################

Buttons below form
buttonDown=0

Errors below form
errorDown=0

Answer as Multipart/Mime (Use this when uploading of files
needed!)
multipart=0

Show menu entries as links (not Buttons)
menuAsLink=0

Width of form's buttons (0 means minimum)
buttonWidth=10

Width of menu fields (0 means minimum)
menuWidth=0

HTML Emulation (default : 0)
emulateHTML=0

Images path (default : "/images")
imagePath="/Cli-HTML/clipart"

Show alternate text for images (default : 0)
showImageAlternate=1

Border width of an image when image is a link (default : 2)
imageBorder=2

The emulateHTML variable must be set to 0 if you want to include HTML tags
in your .per screen files.
Using the HTML Client 10-25

Step 2: Editing the Server Configuration File
Spawning Method

The spawning method determines how the application is started. The
different methods do not interfere with the look and feel of the interface.

Spawning methods
##################

Spawn method
0 : spawned by shell
1 : spawned by runner and environment variables
spawnMethod=0

Script to start the application
defaultProgram="start"

Runner name
fglrunName=""

Start module
fglrunTarget=""

Environment
Note : do not use environment variables within definition of
environment
fglrunEnv0=""

Arrays

You can specify using custom arrays to improve the look and feel of your
application in the Arrays section:

Arrays
########

Array is seen as a button (default : 0)
arrayAsButton=1

Image array (default : "/images/bullet.gif")
arrayImage="/Cli-HTML/clipart/phonebook-bullet.gif"
10-26 Informix Dynamic 4GL User Guide

Step 2: Editing the Server Configuration File
Predefined Macros

The Pre- and Post-Page Macros section specifies predefined macros to set:

■ Background color for the entire application

■ The title

■ The string that lets the user run the application again (such as Try
again)

■ Images that appear in the application

The following section from the configuration file phonebook.conf shows the
Pre- and Post-Page Macros section:

Pre and post page macros
##########################
$NEEDED1="Pragma: no-cache
Content-type: text/html
"
$NEEDED2="
<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">
<META HTTP-EQUIV=\"Cache-Control\" CONTENT=\"no-cache\">
"
$BACKCOLOR="BGCOLOR=\"#6F6FFF\""
$TITLE="<TITLE>The Phonebook - Demonstration</TITLE>"
$TRYAGAIN="Try again"
$REFRESH=
"<META HTTP-EQUIV=\"REFRESH\" CONTENT=\"10; URL=/cgi-
bin/fglcl?phonebook\">"
$HEAD="<IMG SRC=\"/Cli-HTML/clipart/phonebook-large.gif\"
ALIGN=LEFT>
<H3>The Phonebook</H3>"
$TAIL="<HR>
<CENTER>Welcome to The Phonebook Demo program!</CENTER>
</BODY>
</HTML>"

Header
headRecord="$NEEDED1
<HTML>
<HEAD>
$NEEDED2
$TITLE
</HEAD>
<BODY $BACKCOLOR>
$HEAD
"
Tail
tailRecord=
"$TAIL"
Error
Using the HTML Client 10-27

Step 2: Editing the Server Configuration File
errorRecord=
"Pragma: no-cache
Content-type: text/html
<HTML>
<HEAD>
$NEEDED2
$REFRESH
$TITLE
</HEAD>
<BODY $BACKCOLOR>
$HEAD

An error has occured...

Error %s

$TRYAGAIN
$TAIL
"
Time Out
timeOutRecord=
"Pragma: no-cache
Content-type: text/html
<HTML>
<HEAD>
$NEEDED2
$REFRESH
$TITLE
</HEAD>
<BODY $BACKCOLOR>
$HEAD

This application has been terminated on timeout ...

$TRYAGAIN
$TAIL
"
Normal end
endRecord=
"$NEEDED1
<HTML>
<HEAD>
$NEEDED2
$TITLE
</HEAD>
<BODY $BACKCOLOR>
$HEAD

Thanks for trying The Phonebook

$TRYAGAIN
$TAIL
"

10-28 Informix Dynamic 4GL User Guide

Step 2: Editing the Server Configuration File
Results of Updating the Application Configuration File

The modifications shown in the sample configuration file change the sample
application display from the display shown in Figure 10-3 to the display
shown in Figure 10-4.

Figure 10-3
Display Before

Modification
Using the HTML Client 10-29

Step 2: Editing the Server Configuration File
The following modifications are displayed:

1. A small animated gif

2. A header designed in the appname.conf file

3. A small modification in the forms

4. An array header

5. A background color

Figure 10-4
Display After
Modification
10-30 Informix Dynamic 4GL User Guide

Step 3: Creating a Script to Initialize the Application
Step 3: Creating a Script to Initialize the Application
The shell launched to initialize the program on UNIX is named start and
contains the following code:

#!/bin/sh

FGLGUI=2
export FGLGUI

FGLPROFILE=$FGLDIR/etc/fglprofile.web
export FGLPROFILE

exec fglrun main

This script sets FGLGUI to 2, which is the mode used for HTML applications.
It also specifies an FGLPROFILE file that is used for HTML applications.

Step 4: Editing Your Client Configuration File
The fglcl.conf file is located in the Web server’s cgi-bin directory. For more
information, see the client configuration file, fglcl.conf.

Modify the following parameters in the fglcl.conf file:

phonebook.fglserver=app_server_ip_address:96
phonebook.debug=0
phonebook.HTMLdebug=0

Replace app_server_ip_address with the IP address of your application server.
You can use the name of the application server or a fully qualified hostname
and domain name; however, this can require a DNS lookup or a search in
/etc/hosts on UNIX or in %WINDIR%\system32\drivers\etc\hosts on
Windows NT, which can slow performance.

Step 5: Starting the HTML Server Process on UNIX
Start the server process on UNIX with the following command:

$ fglhtmld -f phonebook.Unix.conf

To display system messages, enter the following command:

$ fglhtmld -d -f phonebook.Unix.conf
Using the HTML Client 10-31

Step 6: Starting the Browser
Step 6: Starting the Browser
To run your application in a Web browser using the HTML client, enter the
URL of the Dynamic 4GL application in your browser:

http:// web_server_ip_address/web_server_cgi_alias /
fglcl.exe? appname

For example:

http://d4gl_server/cgi-gin/fglcl.exe?phonebook

Step 7: Using the Application
After your browser has started the application, the user can interact with it to
perform database operations. In this example, the user can browse through
companies as shown in Figure 10-5.

Figure 10-5
Company Browse

List
10-32 Informix Dynamic 4GL User Guide

Step 7: Using the Application
If no more records exists and the user clicks on the Next Page button, the
program generates an error, as shown in Figure 10-6.

In addition, the user can select a company from the list in the previous
display. The user can then display all the company’s known contacts, as
Figure 10-7 shows.

Figure 10-6
Generated

Error Message

Figure 10-7
Contact Browse List
Using the HTML Client 10-33

Step 7: Using the Application
If you select one contact from the list, the information shown in Figure 10-8
is displayed.

Figure 10-8
Contact Information

Display
10-34 Informix Dynamic 4GL User Guide

Step 7: Using the Application
To edit the record, click Edit. Figure 10-9 appears.

The application automatically generates a list box when the 4GL code uses
any INCLUDE= statement. List boxes, such as the one in Figure 10-10, are
automatically displayed when you use INCLUDE in the screen .per file.

This list box was generated from the following code:

f003 = formonly.ctc_title, include=(
"", "Dr.", "Miss", "Mr.", "Mrs.", "Ms.", "Prof.");

Figure 10-9
Contact Information
Record Edit Display

Figure 10-10
List Box
Using the HTML Client 10-35

Step 8: Enhancing the Application
Step 8: Enhancing the Application
You can enhance your Dynamic 4GL application for deployment on the
Web by:

■ enhancing the screen files.

■ creating email and Web site links.

■ using features specific to Dynamic 4GL.

■ improving your application interface.

Creating Email and Web Site Links
You can add features such as URLs or email addresses. To do this, the
database must contain records for the company’s Web site and email address.
You can then use the following code to create a link to an address:

Send a mail to support

To link to a new page:

See our site !

The 4GL code can be enhanced as follows to incorporate links that allow you
to send email to the company or jump to the company’s home page:

DEFINE l_buffer CHAR(500)

...

IF r_company.com_email IS NOT NULL THEN
 LET l_buffer = "<A HREF=\"mailto:",
 r_company.com_email CLIPPED,
 "\">",r_company.com_email CLIPPED, ""
 DISPLAY l_buffer TO com_email
END IF

IF r_company.com_web IS NOT NULL THEN
 LET l_buffer = "<A HREF=\"http://",
 r_company.com_web CLIPPED, "\"
 TARGET=\"_blank\">", r_company.com_web CLIPPED, ""
 DISPLAY l_buffer TO com_web
END IF

To send email, the user can click on the email link. The Web field links to the
company’s Web page.
10-36 Informix Dynamic 4GL User Guide

Enhancing the Screen Files
Enhancing the Screen Files
Enhancing screen files involves adding HTML tags. You must first set the
emulateHTML parameter to 0 in the appname.conf file in order to specify that
the HTML server will read HTML code.

The following example is a basic input/edit/display form without HTML:

DATABASE formonly

SCREEN
{
Contact

id [f001]
Company id [f002]
Title [f003]
First name [f004]
Middle name [f005]
Last [f006]
Suffix [f007]
Job [f008]
Dept [f009]
Telephone [f010]
Fax [f011]
E-mail [f012]
}
END

ATTRIBUTES
f001 = formonly.ctc_id;
f002 = formonly.ctc_com_id;
f003 = formonly.ctc_title, include=(
"", "Dr.", "Miss", "Mr.", "Mrs.", "Ms.", "Prof.");
f004 = formonly.ctc_first;
f005 = formonly.ctc_middle;
f006 = formonly.ctc_last;
f007 = formonly.ctc_suffix, include=(
"", "I", "II", "III", "IV", "Jr.", "Sr.");
f008 = formonly.ctc_job;
f009 = formonly.ctc_dept;
f010 = formonly.ctc_tel;
f011 = formonly.ctc_fax;
f012 = formonly.ctc_email;
END

INSTRUCTIONS
DELIMITERS " "
END
Using the HTML Client 10-37

Enhancing the Screen Files
The following example is the same form with HTML enhancements:
DATABASE formonly

SCREEN
{
<p align="right">
<big>
Contact</big></p>
<HR>
<TABLE>
<TR><TD>id </TD><TD>[f001]</TD></TR>
<TR><TD>Company id </TD><TD>[f002]</TD></TR>
<TR><TD>Title </TD><TD>[f003]</TD></TR>
<TR><TD>First name </TD><TD>[f004
]</TD></TR>
<TR><TD>Middle name </TD><TD>[f005
]</TD></TR>
<TR><TD>Last </TD><TD>[f006
]</TD></TR>
<TR><TD>Suffix </TD><TD>[f007]</TD></TR>
<TR><TD>Job </TD><TD>[f008
]</TD></TR>
<TR><TD>Dept </TD><TD>[f009
]</TD></TR>
<TR><TD>Telephone </TD><TD>[f010
]</TD></TR>
<TR><TD>Fax </TD><TD>[f011
]</TD></TR>
<TR><TD>E-mail </TD><TD>[f012
]</TD></TR>
</TABLE>
}
END

ATTRIBUTES
f001 = formonly.ctc_id;
f002 = formonly.ctc_com_id;
f003 = formonly.ctc_title, include=(
"", "Dr.", "Miss", "Mr.", "Mrs.", "Ms.", "Prof.");
f004 = formonly.ctc_first;
f005 = formonly.ctc_middle;
f006 = formonly.ctc_last;
f007 = formonly.ctc_suffix, include=(
"", "I", "II", "III", "IV", "Jr.", "Sr.");
f008 = formonly.ctc_job;
f009 = formonly.ctc_dept;
f010 = formonly.ctc_tel;
f011 = formonly.ctc_fax;
f012 = formonly.ctc_email;
END

INSTRUCTIONS
DELIMITERS " "
END
10-38 Informix Dynamic 4GL User Guide

Horizontal split
The following section describes the HTML tags shown in this example.

Title

The first set of tags defines a right-aligned paragraph using the Arial font
(similar to Helvetica) in blue (#0000FF).

<p align="right">
<big>
Contact</big></p

The value #0000FF defines a dark blue color.

Horizontal split
The HTML HR tag creates a horizontal line on the page.

<HR>

Table
The HTML TABLE tag creates a new table.

<TABLE>
<TR><TD>id </TD><TD>[f001]</TD></TR>
<TR><TD>Company id </TD><TD>[f002]</TD></TR>
<TR><TD>Title </TD><TD>[f003]</TD></TR>
<TR><TD>First name </TD><TD>[f004
]</TD></TR>
<TR><TD>Middle name </TD><TD>[f005
]</TD></TR>
<TR><TD>Last </TD><TD>[f006
]</TD></TR>
<TR><TD>Suffix </TD><TD>[f007]</TD></TR>
<TR><TD>Job </TD><TD>[f008
]</TD></TR>
<TR><TD>Dept </TD><TD>[f009
]</TD></TR>
<TR><TD>Telephone </TD><TD>[f010
]</TD></TR>
<TR><TD>Fax </TD><TD>[f011
]</TD></TR>
<TR><TD>E-mail </TD><TD>[f012
]</TD></TR>
</TABLE>

Tables allow good positioning while still using proportional fonts.
Using the HTML Client 10-39

How Links Between Pages Work
The display is shown in Figure 10-11.

How Links Between Pages Work
The HTML client stops after each transaction. A link, however, must be made
as a follow-up.

Links between pages are based on the process id (enciphered) of the appli-
cation server process (fglrun) and a sequence number.

Nothing appears on the client side, so you cannot copy and paste the URL to
another browser. The only visible item is the application name, which has the
form: fglcl?appname or fglcl.exe?appname.

Figure 10-11
Form Using an

HTML Table
10-40 Informix Dynamic 4GL User Guide

HTML Emulation for Tables
HTML Emulation for Tables
You can insert HTML tags for tables in your .per file in order to design a more
attractive field display. The HTML client will automatically add the necessary
HTML tags that your application requires. This is called HTML emulation.

For example, if you include the following HTML tags in your .per file:

<TABLE WIDTH=70% BORDER CELLPADDING=2 CELLSPACING=0
BGCOLOR="#FFFFFF">
<TR BGCOLOR="#D0D0D0">
<TH WIDTH=30%> <TH>
Name [f001]
Password [f005]
</TABLE>

Your application displays the table shown in Figure 10-12.

Dynamic 4GL Features
The following sample code generates a new screen from the data in the
company table and creates a new file. The function generateForms() is added
to the .per file.

Figure 10-12
HTML Table Display

Using HTML
Emulation
Using the HTML Client 10-41

Dynamic 4GL Features
DATABASE pb

GLOBALS "globals.4gl"

FUNCTION generateForms()

 DEFINE i SMALLINT
 DEFINE l_buffer CHAR(80)
 DEFINE l_writeBuffer CHAR(80)

 CALL channel::open_file ("f1", "frmlistcontact.per", "w")
 CALL channel::set_delimiter ("f1", "")

 # Header
 CALL channel::write ("f1", "-- Generated screen - DO NOT EDIT")
 CALL channel::write ("f1", "DATABASE formonly")
 CALL channel::write ("f1", "")
 CALL channel::write ("f1", "SCREEN")
 CALL channel::write ("f1", "{")
 CALL channel::write ("f1", "<p align=\"right\">")
 CALL channel::write ("f1", "<big><font face=\"Arial\"
 color=\"#0000FF\">")
 CALL channel::write ("f1", "List of contacts
 </big></p>")
 CALL channel::write ("f1", "<HR>")
 CALL channel::write ("f1", "<I>Company</I> [c001]")
 CALL channel::write ("f1", "<HR>")
 CALL channel::write ("f1", "<TABLE border=\"0\"
 CELLSPACING=\"0\" CELLPADDING=\"0\"> <TR>")
 CALL channel::write ("f1", " <td bgcolor=\"#00FFFF\">
 Id
 </td>")
 CALL channel::write ("f1", " <td bgcolor=\"#00FFFF\">
 Contact
 </td>")
 CALL channel::write ("f1", " <td bgcolor=\"#00FFFF\">
 Phone number
 </td>")
 CALL channel::write ("f1", " <td bgcolor=\"#00FFFF\">
 Fax number
 </td>")
 CALL channel::write ("f1", " <td bgcolor=\"#00FFFF\">
 E-mail
 </td>")

 FOR i = 1 TO 10
 CALL channel::write ("f1", "</TR> <TR>")
 CALL channel::write ("f1", "<TD>[f001]</TD>")
 CALL channel::write ("f1", "<TD>[f002]</TD>")
 CALL channel::write ("f1", "<TD>[f003]</TD>")
 CALL channel::write ("f1", "<TD>[f004]</TD>")
 CALL channel::write ("f1", "<TD>[f005
]</TD>")
 END FOR
10-42 Informix Dynamic 4GL User Guide

Dynamic 4GL Features
 CALL channel::write ("f1", "</TR> </TABLE>")
 CALL channel::write ("f1", "}")
 CALL channel::write ("f1", "END")
 CALL channel::write ("f1", "")
 CALL channel::write ("f1", "ATTRIBUTES")
 CALL channel::write ("f1", "c001 = formonly.company_name,
include=(")

 # Include section from table
PREPARE sqlStatement FROM "SELECT com_name FROM company ORDER BY

com_name"
 DECLARE sqlCursor CURSOR FOR sqlStatement
 OPEN sqlCursor
 FETCH sqlCursor INTO l_buffer
 WHILE status <> NOTFOUND
 LET l_writeBuffer = "\"", l_buffer CLIPPED, "\","
 CALL channel::write ("f1", l_writeBuffer CLIPPED)
 FETCH sqlCursor INTO l_buffer
 END WHILE

 FREE sqlStatement
 FREE sqlCursor

 # Tail
 CALL channel::write ("f1", "\"\"")
 CALL channel::write ("f1", ");")
 CALL channel::write ("f1", "f001 = formonly.contact_id;")
 CALL channel::write ("f1", "f002 = formonly.contact_name;")
 CALL channel::write ("f1", "f003 = formonly.contact_tel;")
 CALL channel::write ("f1", "f004 = formonly.contact_fax;")
 CALL channel::write ("f1", "f005 = formonly.contact_email;")
 CALL channel::write ("f1", "END")
 CALL channel::write ("f1", "")
 CALL channel::write ("f1", "INSTRUCTIONS")
 CALL channel::write ("f1", "DELIMITERS \" \"")
 CALL channel::write ("f1", "SCREEN RECORD scr[10] (")
 CALL channel::write ("f1", " formonly.contact_id,")
 CALL channel::write ("f1", " formonly.contact_name,")
 CALL channel::write ("f1", " formonly.contact_tel,")
 CALL channel::write ("f1", " formonly.contact_fax,")
 CALL channel::write ("f1", " formonly.contact_email)")
 CALL channel::write ("f1", "END")
 CALL channel::write ("f1", "")
 CALL channel::CLOSE ("f1")

 RUN "fglform frmlistcontact.per" RETURNING i

END FUNCTION
Using the HTML Client 10-43

Security Levels
When the generateForms() function is called, this source generates a new
form using channels and a call to the form compiler, fglform. The result of
the modification is shown in Figure 10-13.

Security Levels
This section describes the levels of security features that you can implement.

Default Security
The HTML server identifies the client by encoding in the Web page a special
key that allows tracing. The key is encoded to prevent it from being dupli-
cated by another browser, thus preventing a second connection to the
application server.

Figure 10-13
New Form

Generated by
generateForms()

Function
10-44 Informix Dynamic 4GL User Guide

Default Security
Figure 10-14 shows the default security architecture of the Web deployment
software when a Dynamic 4GL application is running on the Web.

Notice that:

■ the application server is on a secured network with access to the
Internet.

■ the Web server is on a secured service network.

■ the router can either be on a secured service network or on a third,
unsecured network.

■ the firewall is optional.

■ your application server and your Web server can reside on the same
computer.

Each runner process started by the application server has a unique, random
number. This number is used to make a link between each page the appli-
cation server serves to the Web server.

Figure 10-14
Default Security
Architecture for

Web Deployment
Using the HTML Client 10-45

Recommendations for Enhancing Security
Recommendations for Enhancing Security
The following recommendations can enhance the security of your
applications.

SSL

Using a secure socket layer (SSL) between the Internet browser and the Web
server facilitates a secure data flow.

Using a Filtering Router

A filtering router can disable port 6500 (the standard application service port)
or the effective application server communications port on the router. After
this port is disabled, it prevents access to the application server.

With the application service port disabled, normal transactions on port 80
(the standard HTTP service port) are still allowed. This allows the user’s
browser to have access to Web server documents.

Using a Firewall

A firewall can restrict communication so that only the Web server can
communicate with the application server. Any requests from other hosts to
the application server are stopped by the firewall.

Application, Web Server, and Database Security
This section describes security features and considerations for Web
Deployment. The following features help ensure the security of your
database applications:

■ No database network access (such as SQL-Net/ODBC) is necessary.

■ No direct Internet connection is needed for the application or
database server.

■ Only a small amount of code (the HTML client process) exists in the
CGI binaries directory on the Web server.

■ Only one trusted channel is used to traverse the firewall from the
Web server (proved) to the HTML server (also proved).
10-46 Informix Dynamic 4GL User Guide

Preventing Security Problems
■ Logging of the Dynamic 4GL interactions is possible.

■ Applications can run in a special, definable environment with special
and limited rights.

■ Runtime system messages, alerts, and errors are not processed by the
HTML server and thus are not forwarded to the client or visible
through your browser. Isolating the messages has the advantage of
leaving your system anonymous.

Certificate Authority

In order to use SSL, you need to ask a Certificate Authority to sign your
X509 v3 certificate.

For more information on encryption support and restrictions, see Netscape’s
Export Restrictions on International Sales at the following URL:

http://developer.netscape.com/docs/manuals/security/exprt/
index.htm

Preventing Security Problems
The following list summarizes some methods that can be used to prevent
security problems:

■ Reading the data flow between browser and Web server

SSL will prevent eavesdropping of data.

■ Unauthorized entry into the application server code

❑ Router filtering will ignore all TCP/IP packets to port 6500 of the
application server.

❑ The firewall will ignore all TCP/IP packets to port 6500 of the
application server coming from any host other than the Web
server.

■ Copying the URL to another browser

The basic Dynamic 4GL HTML server mechanism will reject the
copied URL.
Using the HTML Client 10-47

Configuring the Web Deployment Software
■ Reading the data flow between the HTML client and the HTML server.
Anyone attempting to break into the system must gain control of a
computer based on the secured network or on the secured service
network.

■ Denial of service

The HTML Client is a small, connectionless program that can only
transmit authorized packets to the HTML server. Therefore, even if
the client stops functioning, the server will still be accessible.

Configuring the Web Deployment Software
This section describes the configuration settings for Web deployment. The
following files contain these settings:

■ appname.conf file

■ fglcl.conf file: use the fglcl.conf file to configure the HTML Client.

If you plan to have a great number of users processing your program, you can
have them use more than one fglhtmld daemon, and consider one program
as more than one application. Specify this in the fglcl.conf file.

Configuration Settings in the fglcl.conf file
To configure the HTML Client, use the fglcl.conf file.

Location
A multiple-entry file, such as an .ini file, would allow the HTML client (fglcl)
to find its required information.

For example:

sample.fglserver=198.2.1.0:0
computer.fglserver=198.2.1.0:1

Calls would then be done through fglcl?sample or fglcl?computer.
10-48 Informix Dynamic 4GL User Guide

fglserver
The full URL could then look like the following:

http://web_server_ip_address/web_server_cgi_alias/fglcl?appName

On Windows NT, the fglcl.conf file is not in the registry because spawned cgi
binaries might not have access to the Registry. Also, an unknown user could
by means of a program read the registry.

The best portable solution is to place the file HTML client (fglcl) program in
the CGI binaries directory for the following reasons.

Some Web servers have a WWW_ROOT like the FTP_ROOT for FTP servers and
spawned processes cannot access files and directories that are at a higher
directory level than WWW_ROOT.

Accessing this file through a Web browser will make the system execute
rather than read this file (all files in the CGI directory are considered
executable).

The full syntax for fglcl.conf is:

appName.fglserver={app_server_ip_address}:{port - 6500}
[appName.debug={0|debug_level}]
[appName.HTMLdebug={0|1}]

fglserver
This variable uses the same configuration as the FGLSERVER variable. It must
be written fglserver (lowercase). The port number must be specified and is
always -6500.

For example, if you plan to run on your computer app_server whose IP
address is 198.100.150.4, on port 6542, the variable entry would be:
fglserver=198.100.150.4:42

debug
This variable indicates debug level. Those debug traces are seen on the
standard error (stderr) and will not be seen in the HTML page.

Debugging can degrade performance.
Using the HTML Client 10-49

HTMLdebug
HTMLdebug
This flag should be set to 0 (no debugging) or to 1 (debugging).

A setting of 1 will show some debug traces of the client (fglcl) in the browser.

Security
This section contains some notes about security features in various Web
servers.

Apache Web Server

Trying to access the fglcl.conf file though the Web server will generate the
following error:

Forbidden
You do not have permission to access /cgi-bin/fglcl.conf on this
server.

Microsoft IIS/Personal Web Server 4.0

When you use the normal configuration with the fglcl.conf file in the CGI
binaries directory on IIS/PWS 4.0, the browser displays the following prompt:

You have chosen to download a file from this location

fglcl.conf from axis

What would you like to do with this file?

You have two options:

■ Open this file from its current location

■ Save this file to disk

The following two considerations regarding fglcl.conf and security on
Windows NT should be observed:

■ The fglcl.conf file is an HTML file and its access should be restricted
through the Web server.

■ The fglcl.conf file is a system file and it should be protected (or
secured) as a normal system file.
10-50 Informix Dynamic 4GL User Guide

Security Through the Web Server
Security Through the Web Server
You can set security for the fglcl.conf file by launching Microsoft
Management Console. Find the fglcl.conf file in the file list and look at the
file’s properties. You will see the dialog box shown in Figure 10-15.

On the File tab, uncheck Read Access Permissions checkbox.

You can also go the File Security tab and click Edit to change the
“Anonymous Access and Authentication Control” configuration.

In the Authentication Methods dialog box that appears, you can disable
(uncheck) all the options.

Security Through the File System
Make sure that the spawned process (fglcl.exe) can read the fglcl.conf file
with the rights from the standard internet guest user. Spawned processes
from the Web server will be under this user’s rights. To specify file permis-
sions, right-click on the fglcl.conf file. Select Properties and then select the
Security tab. Click Permissions to display the File Permissions dialog box.

Figure 10-15
fglcl.conf Properties

Dialog Box
Using the HTML Client 10-51

Summary
Summary
When everything is set properly, you will be prompted for a password when
trying to access this file from another station.

Internet Explorer and IIS/Personal Web Server have special features that
allow them to send and receive data more securely and thus will let the
current user on the Web server access (read) the fglcl.conf file without any
problems. These special features are not available if you are using Navigator
with the IS server.

Configuring the appname.conf File
The naming convention for the application configuration file is
appname.conf, where appname is the name of the application. The configu-
ration variables are not case sensitive.

The appname.conf file has the following flags:

■ General configuration settings

■ Pre and post messages

■ Styles

■ Spawning

■ Arrays

General Configuration Settings
You can set the following general configuration flags:

■ version: Version

■ appName: Application name

■ client: Client

■ service: Service

■ serverNumber: Server number

■ securityLevel: Security level

■ timeOut: Time out
10-52 Informix Dynamic 4GL User Guide

General Configuration Settings
■ maxTasks: Maximum tasks

■ debug: Debug

Version

Allows you to specify the version number of the configuration file.

For example:

Version of the configuration script
version="1.05"

Expected type: string.

Application Name

Allows you to establish a link between the name of the HTML client (fglcl,
fglcl.exe) and the name of the application.

For more information, see “How Links Between Pages Work” on page 10-40.

For example:

Application Name
appName="phonebook"

Expected type: string.

Client

Allows you to establish a link between the name of the HTML client (fglcl,
fglcl.exe) and the name of the application.

For more information, see “How Links Between Pages Work” on page 10-40.

For example:

Program name in the /cgi-bin/ directory
client="fglcl.exe"

Expected type: string.

If you are using the HTML client in a mixed environment (that is, your Web
server is on both UNIX and Windows NT), remember that Windows NT
executables have an .exe extension.
Using the HTML Client 10-53

General Configuration Settings
You will need to rename your UNIX HTML client to match the name it has
under Windows NT.

The HTML client name does not need to be fglcl.exe. Any filename can be
specified, but the name needs to be the same in all configuration files.

Service

The port number that the daemon uses establishes a connection with the
client. The default value is 6500 .

For example:

Service name to register the daemon
service="6500"

Expected type: integer.

Server Number

The default base address is 6500. You can set it to a different port by speci-
fying a value from 0 to 99 , which is added to the base 6500 value.

For example:

The offset from server name port
serverNumber=0

Expected type: integer.

Security Level

Allows you to define security levels. The two possible settings are 1 for Level
1 (basic) and 2 for Level 2 (advanced).

For example:

Security Level
securityLevel=1

For a full explanation, refer to “Security Levels” on page 10-44.

Important: The value of securityLevel defaults to level 1.

Expected type: integer.
10-54 Informix Dynamic 4GL User Guide

General Configuration Settings
Time Out

Allows you to specify the expiration time (in seconds) of the program when
the program is inactive. By default, fglhtmld stops the program if it is
inactive for 300 seconds.

For example:

Expiration time for application, in seconds
timeOut=300

Expected type: integer.

Maximum Tasks

Allows you to specify the maximum number of tasks that the HTML server
(fglhtmld) can handle.

This setting is used to limit the number of users for a Web application so that
it does not interfere with other applications. If you do not want to set a limit,
set this value of maxTasks to -1 .

For example:

Maximum tasks (default : -1)
maxTasks=3

Expected type: integer.

Debug

Allows you to set the debug level. The default value is 2.

For example:

Debug level
0 none
1 verbose
>= 2 no daemon (runs in foreground)
debug=2

Expected type: integer.
Using the HTML Client 10-55

Pre and Post Messages
Pre and Post Messages
The following flags allow you to specify the standard messages your appli-
cation will display, depending on events raised while the program runs:

■ headerRecord: Header

■ tailRecord: Tail (footer)

■ errorRecord: Error

■ timeoutRecord: Time-out message

■ tooManyRecord: Too many tasks

■ endRecord: Normal termination

Header

Allows you to specify a header. The header is text displayed at the top of the
page. It is displayed when a page is generated.

Use the \ character before a double quote (\").

For example:

Header
headRecord="$NEEDED1
<HTML>
<HEAD>
$NEEDED2
$TITLE
</HEAD>
<BODY $BACKCOLOR>
$HEAD

Expected type: message.

Footer

Allows you to specify a footer (or “tail record”). The footer can include a
signature, a company logo, or other information that you want to include at
the bottom of each HTML page.
10-56 Informix Dynamic 4GL User Guide

Pre and Post Messages
For example:

Tail
tailRecord="
<HR>
</BODY>
</HTML>
"

Expected type: message

Error

Allows you to add a % character in the text message. This allows you to see
the error message generated by the program.

For example:

Error
errorRecord=
"Pragma: no-cache
Content-type: text/html
<HTML>
<HEAD>
$NEEDED2
$REFRESH
$TITLE
</HEAD>
<BODY $BACKCOLOR>
$HEAD

An error has occured...

Error %s

$TRYAGAIN
$TAIL"

Expected type: message.

Time-Out Message

Allows you to specify a time-out message. After a time out (specified by the
timeOut variable), users will receive this error message if they try to continue
to access pages.
Using the HTML Client 10-57

Pre and Post Messages
For example:

Time-Out Message
timeOutRecord=
"Pragma: no-cache
Content-type: text/html
<HTML>
<HEAD>
$NEEDED2
$REFRESH
$TITLE
</HEAD>
<BODY $BACKCOLOR>
$HEAD

This application has been terminated on timeout ...

$TRYAGAIN
$TAIL
"

Expected type: message.

Too Many Tasks

Allows you to specify an error message that is displayed when the maximum
task limit is reached, as specified by the maxTasks variable.

For example:

Too many tasks message
tooManyRecord=
"Pragma: no-cache
Content-type: text/html

<HTML>
<HEAD>
<TITLE>Too Many Tasks</TITLE>
</HEAD>
<BODY>
<H1>The maximum task limit has been reached.</H1>
</BODY>
</HTML>"

Expected type: message.
10-58 Informix Dynamic 4GL User Guide

Styles
Normal Termination

Allows you to specify a termination message. After a normal ending of the
program, you receive this termination message.

For example:

Normal end
endRecord=
"$NEEDED1
<HTML>
<HEAD>
$NEEDED2
$TITLE
</HEAD>
<BODY $BACKCOLOR>
$HEAD

Thanks for trying The Phonebook

$TRYAGAIN
$TAIL"

Expected type: message.

Styles
The following styles are used to configure your application by changing its
look and feel:

■ buttonDown: Button down

■ errorDown: Error down

■ menuAsLink: Menu as link

■ buttonWidth: Button width

■ menuWidth: Menu button width

■ emulateHTML: Emulate HTML

■ imagePath: Image path

■ showImageAlternate: Image alternate text

■ imageBorder: Image border
Using the HTML Client 10-59

Styles
Button Down

Allows you to place buttons on top of or below the form. Specify 0 for buttons
below the form and 1 for buttons above the form.

For example:

Buttons below form
buttonDown=0

Expected type: integer.

Error Down

Allows you to set the error line at the top of your page or at the bottom. At
the bottom it looks like a standard 4GL program, but it can be difficult to read
in a Web browser. Specify 0 to set the error line at the bottom of the page, and
1 to set it at the top of the page.

For example:

Errors below form
errorDown=0

Expected type: integer.

Menu as Link

Allows you to use the menus either as a set of buttons or as text links.

For example:

Show menus as links (not Buttons)
menuAsLink=1

Expected type: integer.

Button Width

Allows you to specify the width, in characters, of on-screen buttons.

Width of buttons on a form (0 means minimum)
buttonWidth=10

Expected type: integer.
10-60 Informix Dynamic 4GL User Guide

Styles
Menu Button Width

Allows you to specify the width, in characters, of menu buttons.

For example:

Width of fields menus (0 means minimum)
menuWidth=0

Expected type: integer.

Emulate HTML

Allows you to enable HTML emulation.

When you deploy an existing 4GL application on the Web, this application
looks like a flat ASCII application.

You can insert HTML tags in order to enhance the look and feel of your appli-
cation. If you do so, the internal mechanism for emulating HTML must be
disabled (set emulateHTML to 0). A value of 1 indicates that the HTML client
will emulate (when possible) HTML tags that might not be compatible with
the ones that you inserted.

The default value is 0.

For example:

Emulation of HTML
emulateHTML=1

Expected type: integer.

Image Path

Allows you to specify the default path where images are located. This setting
is used with the Dynamic 4GL DISPLAY statement.

For example:

Images path (default : "/images")
imagePath="/Cli-HTML/images"
Using the HTML Client 10-61

Styles
If you specify the following:

imagePath="/Cli-HTML/images"

and your Dynamic 4GL program contains the following code:

DISPLAY "mypicture.gif" TO myField

Then the resulting HTML code will appear as follows:

The Web server will then look for the image in <document_root>/
Cli-HTML/images/mypicture.gif.

Expected type: string.

Important: Be sure to select an image format that your Web browser supports.

Image Alternate Text

Allows you to specify whether alternate text is displayed. A browser can
display alternate text when the image fails to load properly. It can also
display alternate text when the cursor is positioned over the image. This text
is described in the ALT section of the tag. Specify 1 to display alternate text,
or 0 if you do not want alternate text to be displayed.

For example:

Show alternate text for images (default : 0)
showImageAlternate=1

Expected type: integer.

Image Border

Allows you to specify the width of the border, in pixels, that browsers display
around images.

For example:

Border width of an image when image is a link (default : 2)
imageBorder=2

Expected type: integer.
10-62 Informix Dynamic 4GL User Guide

Spawning
Spawning
Spawning happens when the HTML server (fglhtmld) starts a new task:

■ spawnMethod: Spawning method

■ defaultProgram: Program

■ fglrunName: Runner name

■ fglrunTarget: Runner target

■ fglrunEnv: Runner environment

Spawning Method

The Web deployment software on UNIX systems can use either of two
spawning methods for launching a sub-process:

■ Spawn using a shell where you must define your environment
variables.

■ Spawn using a direct call to the runner and defining the environment
before calling the runner.

Spawn method (default : 0)
0 : spawned by shell
1 : spawned by runner and environment variables
spawnMethod=0

Expected type: integer.

On Windows NT systems, the spawning method must be set to 1.

Program

Allows you to specify the script with which to start your application.

If you spawn your runner using method 0 (spawn using a shell), the daemon
first launches a starting shell that contains fglrun and the environment for
the whole session. You need to use the defaultProgram variable to specify the
starting script.
Using the HTML Client 10-63

Spawning
For example:

Script to start the application
defaultProgram="./start"
The start script looks like the following:
#!/bin/sh
FGLGUI=2
export FGLGUI
FGLPROFILE=$FGLDIR/etc/fglprofile.web
export FGLPROFILE
FGLLANG=english
export FGLLANG
unset DBPATH
exec fglrun main

Expected type: string.

Runner Name

Allows you to specify a runner. If you spawn your runner (application server
process) using method 1 (direct runner spawn), you should specify the name
of your runner. This setting is ignored if you are using spawning method 0.

For example:

Runner name
fglrunName="myfglrun.exe"

Expected type: string.

Runner Target

Allows you to specify a runner target. If you spawn your runner using
method 1 (direct runner spawn), you should specify the target of your
runner. This setting is ignored if you are using spawning method 0.

For example:

Start module
fglrunTarget="main.42r"

Expected type: string.
10-64 Informix Dynamic 4GL User Guide

Arrays
Runner Environment

Allows you to specify environment variables for your runner. If you spawn
your runner using method 1 (direct runner spawn), you should specify the
environment of your runner. This setting is ignored if you are using
spawning method 0.

You can specify up to 20 environment variables (from fglrunEnv0 to
fglrunEnv19). Do not use environment variables inside the definition of
environment variables:

The following example is correct:

fglrunEnv0="INFORMIXDIR=C:\INFORMIX"
fglrunEnv1="FGLDIR=C:\INFORMIX\COMPILER"
fglrunEnv2="PATH=C:\INFORMIX\BIN"
fglrunEnv3="FGLGUI=2"
fglrunEnv4="FGLPROFILE=C:\INFORMIX\COMPILER\etc\fglprofile.web"

The following example is incorrect:

fglrunEnv0="INFORMIXDIR=C:\INFORMIX"
fglrunEnv1="FGLDIR=C:\INFORMIX\COMPILER"
fglrunEnv2="PATH=C:\INFORMIX\BIN"
fglrunEnv3="FGLGUI=2"
fglrunEnv4="FGLPROFILE=%FGLDIR%\etc\fglprofile.web"

For example:

Environment
Note: do not use environment variables within the definition of
environment variables.
fglrunEnv0=""

Expected type: string.

Arrays
The following flags enable configuration for DISPLAY ARRAY and INPUT
ARRAY:

■ arrayAsButton: Array as button

■ arrayImage: Array image
Using the HTML Client 10-65

Troubleshooting the UNIX Installation
Array as Button

Allows you to use a bitmap as the link to an item in an array. Specify 1 to use
a bitmap as a link or 0 to not use a bitmap.

For example:

Array As Button (default : 0)
arrayAsButton=1

Define an image with arrayImage.

Expected type: integer.

Array Image

Allows you to specify the bitmap used as the link to an item in an array. Use
arrayAsButton to use a bitmap as the link to an item in an array.

For example:

Array Image (default : "/Cli-HTML/images/bullet1.gif")
arrayImage="/Cli-HTML/images/bullet1.gif"

Expected type: string.

Troubleshooting the UNIX Installation
If you have problems installing on UNIX, check the HTML client and the
HTML server to verify that each is running.

Checking the HTML Client
To check the HTML client, you must simulate running your application in a
Web server. On the Web server, change to the CGI binaries directory and set
the QUERY_STRING environment variable to the name you used for your
application in the fglcl.conf file. For example:

QUERY_STRING=phonebook
export QUERY_STRING
10-66 Informix Dynamic 4GL User Guide

Checking the HTML Client
To enable debugging for the client, set the debug and HTMLdebug
parameters in the fglcl.conf file, as in the following example:

phonebook.debug=10
phonebook.HTMLdebug=01

To run the HTML client, type:

fglcl

If you see a display similar to the following one, the HTML server is not
responding (there could also be some HTML code, and the detailed messages
can vary from release to release):

[DBG-01].**** Debug mode is:10
[DBG-02].****Summarizing configuration from resource file
[DBG-03].****fglserver is 194.150.8.100:98
[DBG-03].****debugstr is 10
[DBG-05].**** -> Sock::init()
[DBG-05].**** <- Sock::init()
[DBG-02].**** -> Sock::clientsocket()
[DBG-02].**** -> Sock::close() - closing socket 33
[DBG-02].**** <- Sock::close() - status is 0
[DBG-03].**** connect() returned a negative value (-1).
[DBG-04].**** Socket Error (null) (-1).
[DBG-02].**** Error in clientsocket:Connection refused(115)
[LOG-04].Error in clientsocket:Connection refused(115)

Possible reasons and possible actions to take are as follows:

■ The HTML server is not running.

Start the server.

■ The HTML server is running but is not responding to the client.

Check that the application server name is specified correctly for the
fglserver parameter in the fglcl.conf file.

Check that the application server port is specified correctly in the
appname.conf file.

■ The network is unreachable.

Run the ping utility to check whether the client can contact the server
host. For example:

ping 158.58.23.30

Try to run telnet and connect to the server host from the client.
For example:

telnet 158.58.23.301526
Using the HTML Client 10-67

Checking the HTML Server
Checking the HTML Server
To verify that the HTML server is responding to requests, first determine on
which port the server is running by typing the following command:

netstat -a

The display shows a full listing of your TCP and UDP connections, similar to
the following display:

tcp 0 0 *:6598 *:* LISTEN

Next, run telnet and connect to your application server on the port you have
determined it is using:

telnet axis 6598

You should see a display similar to the following display:

Trying 150.55.23.57...
Connected to axis.
Escape character is ‘^]’.

When you press RETURN, the HTML code for the initial page of the demon-
stration application appears to indicate that the server is functioning and
communicating with the client:

Pragma: no-cache
Content-type: text/html

<HTML>
META HTTP-EQUIV=REFRESH CONTENT=”10;
URL=/cgi-bin/fglcl.exe?demo”>
<HEAD>
<BODY BGCOLOR=”#F5F5F5”>
IMG SRC=
10-68 Informix Dynamic 4GL User Guide

Manual Installation on UNIX
Manual Installation on UNIX
Manual installation includes the following tasks:

■ Extracting all the files into a temporary directory

■ Copying files for the following components to the following
locations:

❑ The HTML client to the Web server

❑ The HTML server to the application server

❑ The HTML documentation to the Web server

❑ The example to either server

These tasks are described in more detail on pages 10-69 through 10-72.

Extracting the Files
Create a temporary directory in which to extract the HTML client software
and then extract the files. The binaries and documentation are compressed in
the file named ALL/HTML-ALL.TGZ within the CLIENTS/CLI-HTML
directory.

If you have the GNU version of the tar program, enter:

tar -xzf ./ALL/HTML-ALL.TGZ

If you do not have the GNU version of tar, enter:

gunzip -c ./ALL/HTML-ALL.TGZ | tar -xf -

After extracting the files, you should see the following directories:

AppServer
examples
release
WebServer
Using the HTML Client 10-69

Installing the HTML Client on the Web Server
Installing the HTML Client on the Web Server
To install the HTML client, copy two files to the directory where the Web
server daemon is running. The client files are initially placed in the
WebServer/cgi-bin/platform-name directory, where platform-name is the
specific UNIX or Windows NT platform you are using.

You must copy the following files:

■ fglcl (the HTML client)

Copy this file to the cgi-bin directory under your main Web server
directory.

■ fglcl.conf (the configuration file for the HTML client)

This file contains configuration settings for each Dynamic 4GL
application you are running.

Copy this file to the cgi-bin directory under your main Web server
directory.

For example, the following code copies each of the files from an installation
directory named /d4gl/Cli-Html to the CGI binaries directory on a Web server
named /usr3/httpd, and then sets appropriate file permissions (SLS-0250
represents the directory where the HTML client binary for the Solaris
platform resides):

cp d4gl/Cli-Html/WebServer/cgi-bin/SLS-0250/fglcl
usr3/httpd/cgi-bin

chmod 755 usr3/httpd/cgi-bin/fglcl

cp d4gl/Cli-Html/WebServer/cgi-bin/SLS-0250/fglcl.conf
usr3/httpd/cgi-bin

chmod 644 usr3/httpd/cgi-bin/fglcl.conf
10-70 Informix Dynamic 4GL User Guide

Installing the HTML Server on the Application Server
Installing the HTML Server on the Application Server
To install the HTML server, you copy four files from the AppServer directory
to the directory where your Dynamic 4GL compiler or runtime resides (as
specified in the setting for the FGLDIR environment variable).

You must copy the following files:

■ fglhtmld (the HTML server)

Copy this file to the bin directory under $FGLDIR.

■ fgl2cres.web (the resource file for the HTML server)

Copy this file to the etc directory under $FGLDIR.

■ fglprofile.web (the profile for the HTML server)

Copy this file to the etc directory under $FGLDIR. You can also spec-
ify the FGLPROFILE variable to locate this file.

■ cli-html.iem (the message file)

Copy this file to the msg directory under $FGLDIR.

Optionally, you can also place the fglcl and fglcl.conf files in the bin
directory under $FGLDIR as a backup for the files on the Web server.

For example, the following code copies each of the three files from an
installation directory named /d4gl/Cli-Html to the directory on the appli-
cation server specified by FGLDIR, and then sets appropriate file permissions
(SLS-0250 represents the directory where the HTML client binary for the
Solaris platform resides):

cp /d4gl/Cli-Html/AppServer/bin/SLS-0250/fglhtmld
$FGLDIR/bin

chmod 755 $FGLDIR/bin/fglhtmld

cp /d4gl/Cli-Html/AppServer/etc/fgl2cres.web
$FGLDIR/etc

chmod 644 $FGLDIR/etc/fgl2cres.web

cp /d4gl/Cli-Html/AppServer/etc/fglprofile.web
$FGLDIR/etc

chmod 644 $FGLDIR/etc/fglprofile.web
Using the HTML Client 10-71

Installing the HTML Documentation on the Web Server
Installing the HTML Documentation on the Web Server
The HTML documentation describes the fglcl.conf file in more detail and
provides information about using the Web deployment software. To install
the documentation, create a subdirectory such as WebServer/htdocs and
extract the contents of the WebServer/doc.tgz file into this directory. For
example:

mkdir WebServer/htdocs
cd WebServer/htdocs
tar -xzf ../doc.tgz

Next, create a directory named Cli-Html under the document root directory
on your Web server and copy the documentation there. For example:

mkdir /usr3/httpd/htdocs/Cli-Html
cp -r . /usr3/httpd/htdocs/Cli-Html

Be sure to name this directory Cli-Html; if you use another name, you will
need to edit the configuration files for the example program so that the
example will run correctly.

You might want to add a link from your home page to the
Cli-Html/index.html file to make it easy to access the documentation.

Installing the Example
The phonebook example is a phone directory that uses the stores7 database.
The example is originally placed in the example directory. You can copy it to
any directory.

To install the example

1. Place either the UNIX or the Windows NT version of the phonebook
example in a directory.

2. Run make on UNIX or nmake on Windows NT and follow the on-
screen instructions.
10-72 Informix Dynamic 4GL User Guide

Troubleshooting the Windows NT Installation
3. Enter make install (or nmake install) to install the data used in
the phonebook example.

4. Enter make text to install the text version of the phonebook
example or make web to install the Web version.

The text version runs in ASCII and Windows terminals and can be
deployed on the Web; however, it is not optimized for Web
deployment.

The Web version includes enhancements for Web deployment.

Configuring your environment to run your applications from the browser
involves placing entries in the fglcl.conf file and in the cgi-bin directory on
your Web server. For detailed information on configuring and executing
applications, see the on-line HTML documentation. You must make the
necessary changes to the configuration files before you can test the
installation.

Troubleshooting the Windows NT Installation
If testing reveals a problem, you can check the HTML client and the HTML
server to verify that each is running. For more information, see “Trouble-
shooting the UNIX Installation” on page 10-66. This section gives differences
that apply to Windows NT.

Checking the HTML Client
To set the QUERY_STRING environment variable on Windows NT for the
phonebook example, type:

set QUERY_STRING=phonebook

Checking the HTML Server
To see the TCP and UDT connection listing, type:

C:\> netstat -a
Using the HTML Client 10-73

11
Chapter
Using the Java Client
In This Chapter . 11-3

Introduction . 11-3
Programs and Applets 11-4
Swing . 11-5
Server-Side Components 11-5
How Dynamic 4GL Uses Java 11-5
Java Client Limitations 11-8
Java Client Security 11-8
Java Client Definitions 11-8

Aliases . 11-9
Tag Words and Paths 11-9

Requirements. 11-11
Java Client Web Browser Requirements 11-11
Client Java Applet Viewer Requirements 11-12
Web Server Hardware and Software Requirements 11-13
Dynamic 4GL Application Server Requirements 11-13

Installing the Java Client 11-14
UNIX Installation 11-14

Verifying Required Components 11-15
Running the Shell Script 11-15
Installing on the Web Server 11-18
Installing the Client Component 11-19
Performing Additional Tasks. 11-20

Windows NT Installation 11-20
Automatic Installation 11-20
Manual Installation 11-21
Installing Client Components 11-21

11-2 Inf
Additional Installation Tasks 11-23
Installing swingall.jar and Setting CLASSPATH on the Client . 11-23
Unjarring the cjac.jar file 11-28
Configuring the Servlet Engine for Use with the Java Client . . 11-29
Verifying Your CLASSPATH Setting on the Web Server 11-35
Testing the Installation 11-35

Configuring the Java Client 11-37
Editing the cjac.cnf File 11-38

Setting Environment Variables 11-38
Setting Commands and Arguments for Application Execution . 11-41
Setting General Parameters Governing CJAC Behavior 11-41
cjac.comm.client.http.requestTimeout 11-42
cjac.comm.client.http.requiredBandwidth 11-42
cjac.comm.client.http.getTimeout 11-42
cjac.comm.server.task.reannounceDelay 11-42
cjac.comm.server.task.startUpTimeout 11-43
cjac.comm.server.tcp.basePort 11-43
cjac.comm.server.tcp.maxConnection 11-43
cjac.comm.server.tcp.portRange 11-43
cjac.comm.server.tcp.reuseDelay 11-44
cjac.setup.check.arg 11-44
cjac.setup.check.enabled 11-44

Sample cjac.cnf file. 11-45
Local and Remote Connections to the Application Server . . . 11-48

Editing the clijava.cnf File 11-49
Changing Colors 11-50
Configuring Interface Elements 11-51
Font Types and Known Font Equivalents 11-52
Configuring Other Java Applet Elements 11-53

Running an Application with the Java Client 11-54
Creating the HTML Page 11-54
Setting CJA Parameters 11-55

Parameter Settings not Available in clijava.cnf 11-55
Parameter Settings Available in clijava.cnf 11-56

Running the Application 11-56
Java Client Enhancements 11-57
ormix Dynamic 4GL User Guide

In This Chapter
This chapter describes how to use the Java Client, including how to configure
the client and Web server. In this chapter:

■ application denotes the 4GL application with which you are commu-
nicating through a Web browser

■ applet denotes the Cli Java Applet (CJA), which interacts with the Cli
Java Application Connector (CJAC) software to display the 4GL
application

■ application server denotes the computer on which the compiled
Dynamic 4GL application is executed by the Dynamic 4GL runner.

This is usually (but not necessarily) the same computer on which the
Dynamic 4GL compiler resides.

Introduction
This section gives a brief overview of the Java programming language
created by Sun Microsystems. It also describes how Dynamic 4GL uses Java.

Java is an object-oriented programming language with syntax similar to that
of C++. The Dynamic 4GL compiler and its associated Dynamic Virtual
Machine (DVM) has an architecture similar to that of Java with the Java
Virtual Machine (JVM). You compile your Java code (source files with a .java
extension) into objects described in files with a .class extension. There are
often many such .class files, so they are commonly stored in .jar or .zip
archives.
Using the Java Client 11-3

Programs and Applets
There is no linker in Java. Instead, whenever a class is required, a set of
predefined directories is searched first, followed by each directory or file that
is listed in the setting for the CLASSPATH environment variable. Java uses
CLASSPATH the way the operating system uses the PATH variable, except
that the CLASSPATH setting can specify .jar and .zip archives in addition to
directories and files.

After Java source code has been compiled, it is known as bytecode. Rather than
a machine-dependent code such as C++ generates, Java generates portable
code, somewhat like Dynamic 4GL P code. The bytecode can be copied to and
used by any platform that has a Java Virtual Machine (JVM), which is also
sometimes known as the Java Runtime Environment (JRE).

The Java development environment is called the Java Development Kit, or JDK.
Versions for Java and the JDK are often expressed interchangeably, so that
when you hear, “My JDK Version is 1.1,” it can mean, “I am using Java Version
1.1.”

Programs and Applets
A Java program consists of a single class which, in turn, references other
classes. The class is executed using the Java Virtual Machine, which is named
java. For example, to execute the program myjava.class from the command
line, you would type:

java myjava.class

The java command is often embedded in a shell script (on UNIX) or batch file
(on Windows) for convenience.

An applet is a Java program that is executed inside a Web browser. To execute
an applet, you load a Web page that includes a special HTML tag similar to
the tag used to load an image. The browser then downloads the applet and
executes it using the JVM. Because the applet is stored on the Web server and
only downloaded as it is being executed, deployment and maintenance of the
applet is much simpler than deploying an equivalent Java program to many
sites and then maintaining all the sites.
11-4 Informix Dynamic 4GL User Guide

Swing
Swing
The original Java user interface was written in a set of classes called Abstract
Window Toolkit or AWT. AWT relied heavily on native libraries, and therefore
had portability issues. A new implementation of the user interface was
included in the Java Foundation Classes (JFC), introduced in 1997, through a set
of new components called Swing. Swing is written entirely in Java and does
not require extra system libraries, avoiding portability problems among
different environments.

The Swing components are not part of Java Version 1.1, but you can use them
with that version by installing them separately. Although most Web browsers
do not support Swing by default, you can usually add support by adding the
.jar file for the Swing package to the CLASSPATH setting.

Server-Side Components
Java was designed to efficiently handle connectivity across a network. You
can write Java programs to behave as servers or to interact with other
network components, such as Web servers.

To extend a Web server, you can use the Common Gateway Interface (CGI). This
technology is used by the Dynamic 4GL HTML client (see Chapter 10, “Using
the HTML Client,” for more information.) CGI is less efficient with Java,
however, because CGI starts a new process every time it receives a new call.
With Java, this means starting a new JVM and then a Java program with each
call.

Instead, Dynamic 4GL uses servlets, created using the Java Servlet Development
Kit (JSDK). The servlets reside on one virtual machine and persist there,
lowering startup time and transmission bandwidth and saving memory.

How Dynamic 4GL Uses Java
To interact with Java, the Dynamic 4GL runner sends the output of the
Dynamic 4GL Virtual Machine to a servlet instead of to WTK (on Windows)
or to fglX11d (on UNIX). The servlet, called the Cli Java Application Connector
(CJAC), handles communication between the client (the Web browser) and
the runner.
Using the Java Client 11-5

How Dynamic 4GL Uses Java
The interface to the user is handled by the Cli Java Applet (CJA), which
communicates with CJAC to display information and support user input.

The detailed sequence of operations is as follows:

■ The Web browser (or appletviewer) initiates a request.

The browser (or appletviewer) must be compliant with JDK 1.1.3 or
later and should support the Java Foundation Classes (Swing) Ver-
sion 1.1. Swing must be installed separately.

■ The Web server spawns and communicates with CJAC.

The Web server must be able to run servlets.

■ The Java Application Connector communicates with a Dynamic
Virtual Machine (DVM) that handles and interprets the P code.

The CJAC servlet starts a DVM that communicates with the applet.
11-6 Informix Dynamic 4GL User Guide

How Dynamic 4GL Uses Java
The following figure shows the complete environment for the Java Client.
You can run the Java Client through a firewall, as shown in Figure 11-1.

Figure 11-1
Java Client Firewall Architecture

CJAC
servlet

Servlet
X

Servlet
Y

JVM (Java Virtual Machine)
Normal content:
pages, images,
logos, and so
forth

Cohabitation
with Cli HTML

Web server (httpd)

Optional Firewalls

Internet

Unsecured
Side

Secured
Side

Cli Java (used in the secured zone)

WTK/X11

ASCII terminal

Local intranet

Application server (DVM)

fglrun
4GL app

4GL app

4GL appDatabase**

** Database can also be network
access to a database server.
Using the Java Client 11-7

Java Client Limitations
Java Client Limitations
When using the Java Client, be aware of the following limitations:

■ With 4GL, each character entered into a field is analyzed and trans-
mitted to the runner.

With local editing on Dynamic 4GL, the entire field is analyzed at
once and transmitted to the runner.

■ Avoid interactive system calls.

The Java Client does not include terminal emulation software (the
Windows Client, however, does include such software).

■ You cannot use DDE (even on Windows).

■ A Java applet cannot access the local system.

This means you cannot use systems calls such as rcp or winexec, and
you cannot use local storage.

■ You must use .gif or .jpg images.

You cannot use .bmp images with the Java Client.

Java Client Security
Security is an important concern for software that runs on the Web. The Java
Client software does not include specific security features, so you are
encouraged to use existing security measures and protocols, including
firewalls and the secure socket layer (SSL) protocol in addition to preserving
the security features in your original application. If you are using an extranet
or the Internet, you might consider instituting a login and password scheme.

Java Client Definitions
Before installing the Java Client, review the following definitions. These
definitions are used throughout the installation.
11-8 Informix Dynamic 4GL User Guide

Java Client Definitions
Aliases

An alias (or virtual directory) is a name you define as a substitute for a real
path name. An alias called clijava can point to any directory on your Web
server. The advantage of using an alias is that the full path is invisible to the
user.

For example, if your document root directory is /usr/htdocs, when you create
a directory clijava in /usr/htdocs (the full path is then /usr/htdocs/clijava), it
will be seen by a user as clijava.

For more information on aliases and virtual directories, refer to your Web
server documentation.

Tag Words and Paths

The following table lists tag words and paths that are used in the descriptions
of how to install and configure the Java Client.

Tag Word Explanation Example

web_server The Web server IP
address. In most cases it
can be replaced by the
Web server name.

10.0.0.1

web_server_port The port your Web server
is listening to. In most
cases it is 80.

80, 8080, 8081...

IP address An IP address in the
aaa.bbb.ccc.ddd format,
where aaa, bbb, ccc and
ddd are integers between
0 and 255.

10.0.0.3

web_server_servlet_dir The Web server servlets
directory, seen as a UNIX
or a Windows NT path.

/usr/local/apache/share/
servlets or
c:\inetpub\wwwroot\
servlets

 (1 of 2)
Using the Java Client 11-9

Java Client Definitions
web_server_servlet_dir_alias The servlets directory
alias for the Web server: it
is a virtual path from the
WWW root directory to
web_server_servlet_dir.

In this release, the alias
must be /servlets/. The
applet (CJA) will contact
the servlet (CJAC)
through an http request:
http://<web
server>:<web server
port>/servlets/cjac and
will fail if there is no
answer.

servlets, slets...

web_server_clijava_dir The directory where you
want to install your “call”
to Cli Java. This directory
is a subdirectory of your
document directory or an
alias that points to it. This
directory is a path on both
UNIX and Windows NT.

/usr/local/apache/share/
htdocs/clijava

web_server_clijava_dir_alias The Web alias directory
(or virtual directory)
where you want to install
your “call” to Cli Java.

clijava...

Tag Word Explanation Example

 (2 of 2)
11-10 Informix Dynamic 4GL User Guide

Requirements
Requirements
This section covers the hardware and software requirements for installing the
Java Client.

Java Client Web Browser Requirements
The following table summarizes the supported hardware and software for
the Java Client Web browser. The Browser or Java AppletViewer must
support JDK Version 1.1.

Important: Browser size can vary widely from one operating system to the other and
depends upon the options the user selects when installing the browser.

Platform Version Hardware Software

UNIX Various
versions

32 megabytes of RAM (64 megabytes
recommended)

Netscape Communicator 4.5 with Java
Foundation Classes (Swing) 1.1

Microsoft Internet Explorer 4.x with
Java Foundation Classes (Swing) 1.1

Windows Intel 32 megabytes of RAM (64 megabytes
recommended)

Intel or compatible Pentium class
CPU at 133 MHz (200 MHz
recommended)

30 megabytes for the browser, 12
megabytes for the Java Plug-In, and 1
megabyte for the applet

Netscape Communicator 4.5 with Java
Foundation Classes (Swing) 1.1

Microsoft Internet Explorer 4.x with
Java Foundation Classes (Swing) 1.1

Instead of the Swing Java Classes, you
could install the Sun Java
Plug-In. The Sun Plug-in is only
available for Solaris, Windows 9x, and
Windows NT 4.0.

Mac OS PowerPC 32 megabytes of RAM (64 megabytes
recommended)

PowerPC 603e at 200 MHz (PowerPC
G3 at 233 MHz recommended)

20 megabytes for the MRJ (Mac OS
Runtime for Java) and 1 megabyte for
the applet

Apple MRJ (Mac OS Runtime for Java)
2.1

MacOS 8.1 or later

Microsoft Internet Explorer 4.0
Using the Java Client 11-11

Client Java Applet Viewer Requirements
Client Java Applet Viewer Requirements
The following table summarizes the supported hardware and software for
the Java Client Applet Viewer.

Platform Version Hardware Software

UNIX various
versions

32 megabytes of RAM (64 megabytes
recommended)

Java Runtime Environment

Java Foundation Classes (Swing) 1.1

Windows Intel 32 megabytes of RAM (64 megabytes
recommended)

Intel or compatible Pentium class
CPU at 133 MHz (200 MHz
recommended)

12 megabytes for the Java Plug-In and
1 megabyte for the applet

Java Runtime Environment 1.1.3 (Java
Runtime Environment or Java Devel-
opment Kit 1.1.7 recommended)

Java Foundation Classes (Swing) 1.1

Mac OS PowerPC 32 megabytes of RAM (64 megabytes
recommended)

PowerPC 603e at 200 MHz (PowerPC
G3 at 233 MHz recommended)

20 megabytes for the MRJ (Mac OS
Runtime for Java) and 1 megabyte for
the applet

Apple MRJ (Mac OS Runtime for Java)
2.1

MacOS 8.1 or later
11-12 Informix Dynamic 4GL User Guide

Web Server Hardware and Software Requirements
Web Server Hardware and Software Requirements
The following table summarizes the supported hardware and software for
the Java Web Server. You need a Web server that supports Java servlets, such
as Sun’s Java Web Server, Apache with Apache JServ, IIS with JRun, or
Netscape with JRun.

Important: Web server (HTTP server) size can vary widely from one operating
system to the other and depends upon the options the administrator selects when
installing the server.

Dynamic 4GL Application Server Requirements
The following table summarizes requirements for the application server.

Platform Version Hardware Software

UNIX various
versions

32 megabytes of RAM (64 megabytes
recommended)

5 megabytes for the HTTP server, 42
megabytes for the Java Development
Kit (Java Run Time Environment),
and 1 megabyte for the servlet

Web server software that supports
servlets and is compliant with JSDK
2.0

JDK/JRE 1.1.3 or later

Windows
NT

Intel 32 megabytes of RAM (64 megabytes
recommended)

Intel or compatible Pentium class
CPU at 133 MHz (200 MHz
recommended)

5 megabytes for the HTTP server, 5
megabytes for the Java Run Time
Environment, and 1 megabyte for the
servlet

Web server software that supports
servlets and is compliant with JSDK
2.0

JDK/JRE 1.1.3 or later

Software Requirements Hardware Requirements

Dynamic 4GL runtime (DVM) version
3.x (or later)

For hardware requirements and
information about installing the
compiler, refer to Chapter 2.
Using the Java Client 11-13

Installing the Java Client
Installing the Java Client
After you configure your Web server for servlets, you can install the Java
Client. You can install the Java Client on UNIX or Windows NT.

These instructions assume that you are installing the Java Client on a
computer that acts as both application server and Web server. The client
(user-interface) portion of the architecture is handled through the Swing
classes you install in your Web browser. (Installing Swing is described in
“Installing swingall.jar” on page 11-24.)

UNIX Installation
UNIX installation includes:

■ Verifying required components

■ Running the shell script

■ Installing the client component (swingall.jar)

■ Performing additional installation tasks
11-14 Informix Dynamic 4GL User Guide

UNIX Installation
Verifying Required Components

To use the Java Client, you need the proper software configured and
installed. Verify that you have all the following components:

■ Client with TCP/IP access and a Java enabled browser (or Java
Applet Viewer)

The browser (or Applet Viewer) must be compliant with JDK 1.1.3 or
later and should support JFC (Swing) Version 1.1.

■ Web server that supports Java servlets, such as Sun’s Java WebServer,
Apache with Apache JServ, IIS with JRun, or Netscape servers

■ Cli Java Application Connector (CJAC)

■ Application Server

■ Compiled Dynamic 4GL application and runner

Running the Shell Script

The installation shell script is named clijava-all-version-allos.sh where
version is the version number of the software.
Using the Java Client 11-15

UNIX Installation
To install the Java Client

1. Type the following command:
sh clijava-all-0.90.1e1-allos.sh -i

The following message appears:
###

Informix Dynamic 4GL Java Client <version> for <os>
###

Identifying your system........................... <os>
Looking for df command............................ Available
SHELL is.. /bin/sh
Looking for Unix commands......................... Ok
Looking for shell commands........................ Ok
Looking for ln -s................................. Ok
Current user is Not SUPERUSER

WARNING ---
With this user some administration operations will be skipped.

The following prompt appears and offers to continue the installation
even though you are not the root user:

Do you want to continue to install the product?
Options: ([Y]es | [N]o | [C]ancel | ?)
Default: [Y]

You need not be root to install the Java Client Web server. However,
as most Web servers are installed as root, it might be better to be the
same user as when the Web server was installed. The installation
does copy some files to the Web server and you will need appropriate
access rights. For these access rights, see your Web server
documentation.

2. Type Y to continue the installation.

The following list of installation options appears:
Checking command chmod for this user.............. Ok
Looking for clijava.tgz in /tmp/decomp............ Ok

##
Welcome to Informix Dynamic 4GL Java Client installation script
##

1 --- Cli Java Application Server components
2 --- Cli Java Web Server components
3 --- Cli Java Application Server & Cli Java Web Server components
4 --- Cli Java Client components
5 --- Cli Java User Manual only

Options: (VALUE | [C]ancel)
Default: [1]
11-16 Informix Dynamic 4GL User Guide

UNIX Installation
3. Select an installation option.

For instance, to install both the Web server and application server
components, select 3. The following messages appear:

Free disk space in /tmp/install................... 304048 blocks
Preparing Cli Java installation package........... Ok

4. Several components need to be installed on the application server.
The installation shell script uses your FGLDIR setting as the default
directory. If you choose a directory other than FGLDIR, you must
place the components in the proper FGLDIR directories after
installation.

##
 Application Server - Installation

##

You selected Cli Java Application Server components installation,
Where do you want to install them (usually $FGLDIR)
Options: (VALUE | [C]ancel | ?)
Default: [/usr/fgl2c
Free disk space in /usr/fgl2c..................... 1008698 blocks
Java Client Application Server package............ Ok

You are now finished installing components on the application
server and can begin installing components on the Web server.

The Cli Java Applet is the first component. The following message appears:

##
 Web Server - Applet Installation
##

You selected Cli Java Web Server components installation Part 1/2.
Using the Java Client 11-17

UNIX Installation
Installing on the Web Server

1. Two main groups of files are installed on the Web server:

❑ Some files go into the documents directory of the Web server
(often named htdocs). Included among these files are the CJA
applet, downloaded by a browser connecting to the Web server,
and the sample HTML pages that call demonstration
applications.

❑ The remaining files, including the CJAC servlet, go into the
servlets directory.

The following prompt appears for the directory where you want to
install the first group of files:

Enter your HTML documents home directory (htdocs) ?
Options: (VALUE | [C]ancel | ?)
Default: [/usr/local/apache/htdocs]

2. Enter the root directory of your documents directory on your Web
server.

This value will be used to define web_server_clijava_dir. If possible,
use the default value as it will later make configuring the server
easier.

CJA and related files will be installed in:
[/usr/local/apache/htdocs/clijava]
Do you agree ?
Options: ([Y]es | [N]o | [C]ancel | ?)
Default: [Y]
Free disk space in ~ocal/apache/htdocs/clijava.... 293298 blocks
Cli Java CJA package - Part 1/2................... Ok
11-18 Informix Dynamic 4GL User Guide

UNIX Installation
3. Next, you receive the following prompt for the location in which to
install the CJAC servlet and related files:

###
 Web Server - Servlet Installation

##
Enter your servlet home directory (servlets) ?
Options: (VALUE | [C]ancel | ?)
Default: [/usr/local/apache/servlets]

This value is web_server_servlet_dir.
CJAC files will be installed in:
[/tmp/servlets]
Do you agree ?
Options: ([Y]es | [N]o | [C]ancel | ?)
Default: [Y]

Free disk space in /usr/local/apache/servlets..... 292956 blocks
Cli Java CJAC package - Part 2/2.................. Ok

##
 User Manual - Installation

##
Would you like to install the HTML version of the Cli Java
documentation?
Options: ([Y]es | [N]o | [C]ancel | ?)
Default: [Y]
You selected Cli Java HTML documentation installation.
Do you want to install it in the following directory ?
[/usr/local/apache/htdocs/clijava/manual]
Options: ([Y]es | [N]o | [C]ancel | ?)
Default: [Y]
Free disk space in ~ache/htdocs/clijava/manual.... 292045 blocks
Cli Java User Manual Insatallation................ Ok
You can now read the User Manual with your browser, open it with the
following URL:

file:///usr/local/apache/htdocs/clijava/manual/index.html

You have now completed the installation and will see the following
banner:

##
 End of the installation process

##

Installing the Client Component

The Java Client package includes a swingall.jar file, which must be placed on
the client computer. You can choose to install this component on the Web
server computer and later transfer the file to the client, or you can run the
installation shell script on the client computer itself (this is Option 4 in the
installation shell script). For more information about installing swingall.jar
on the client, see “Installing swingall.jar and Setting CLASSPATH on the
Client” on page 11-23.
Using the Java Client 11-19

Windows NT Installation
Performing Additional Tasks

To continue the installation, see “Additional Installation Tasks” on
page 11-23.

Windows NT Installation
Before beginning the installation, verify that you have the following required
components to run the Java Client:

■ Client with TCP/IP access and a Java enabled browser (or Java
Applet Viewer).

The browser (or Applet Viewer) must be compliant with JDK 1.1.3 or
later and should support the JFC (Swing) Version 1.1.

■ Web server that can support Java servlets and is JSDK 2.0 compliant,
such as Apache with Apache JServ, IIS, or Netscape with JRun.

■ Application server

■ Compiled Dynamic 4GL application and runner.

Windows NT offers both automatic and manual installation.

Automatic Installation

Automatic installation downloads all the files and handles installation of all
the components. The sections that follow (“Downloading Installation Files”
through “Installing Client Components”) document manual installation.
Read those sections for the steps required for successful installation.

If you are installing the Java Client using automatic installation, the instal-
lation wizard will guide you through these steps. Run the installation wizard
executable in the Java Client folder within the Clients directory on your
product CD.
11-20 Informix Dynamic 4GL User Guide

Windows NT Installation
Be prepared to give destination directories for the various parts of the Java
Client architecture. For example:

■ The application server package should be placed in the directory that
the FGLDIR environment variable indicates.

■ The Web server applet package should be placed in
web_server_clijava_dir.

■ The Web server servlet package should be placed in
web_server_servlet_dir.

■ The documentation package can be placed in the documents
directory of your Web server.

Manual Installation

Manual installation includes the following steps:

■ Downloading installation files

■ Installing application server components

■ Installing Web server components

■ Installing client components

■ Installing HTML documentation

Installing Client Components

Installation includes the steps in the following sections.

Downloading Installation Files

This step is necessary only if you are installing the Java Client manually.
Copy the files from the CD to a folder on your hard drive. Then follow the
steps in the following sections to place the Java Client components in the
proper directories.
Using the Java Client 11-21

Windows NT Installation
Installing Application Server Components

Several Java Client components must be placed in your FGLDIR directory on
your application server. These components are included in the appserver.tgz
file in your Java Client installation directory. They include:

■ etc\clijava.cnf

■ etc\clijava.res

■ msg\clijava.iem

■ src\clijava.msg

■ clijava

■ clijava\release

■ clijava\release\k

■ release.txt

To install these files, unzip the contents of appserver.tgz and extract the files
to your FGLDIR directory.

Installing Web Server Components

Two groupings of files must be placed within your Web server. Some files
belong in the documents directory of the Web server. Included among these
files are the CJA applet downloaded by browsers connecting to the Web
server and the sample HTML pages that call demonstration applications.
These files are included in the webserverapplet.tgz file in your Java Client
installation directory.

The remaining files, including the CJAC servlet, go into the servlets directory.
These files are included in the webserverservlet.tgz file in your Java Client
installation directory.

To install the contents of webserverapplet.tgz, unzip the file and extract the
contents to your web_server_clijava_dir directory. This directory should reside
within your Web server documents directory. An example
web_server_clijava_dir might be C:\Inetpub\wwwroot\docs\clijava.

To install the contents of webserverservlet.tgz, unzip the file and extract the
contents to your web_server_servlet_dir. An example web_server_servlet_dir
might be C:\Inetpub\wwwroot\servlets.
11-22 Informix Dynamic 4GL User Guide

Additional Installation Tasks
Installing Client Components

The Java Client package includes a swingall.jar file, which must be placed on
the client computer. This file is included in the client.tgz file in your Java
Client installation directory. For more information about installing
swingall.jar on the client, see “Installing swingall.jar and Setting
CLASSPATH on the Client” on page 11-23.

Installing the HTML Documentation

To install the HTML version of the Java Client documentation, extract the
contents of the manual.tgz file into a directory accessible to your Web server.

Additional Installation Tasks
Additional tasks include the following:

■ Installing swingall.jar on the client and setting the client
CLASSPATH environment variable

■ Unjarring the cjac.jar file

■ Configuring the servlet engine for use with the Java Client

■ Verifying your CLASSPATH setting

■ Testing the installation

Installing swingall.jar and Setting CLASSPATH on the Client

The client computer displays the Java Client using a Java enabled Web
browser or Java applet viewer. To accomplish this, the client computer must
have the Swing library installed. The following sections describe how to
install the Swing library.

First, to verify that your client can support the Java Client, run the Client
Detection Wizard. The wizard checks the operating system, browser version,
and whether the browser has the appropriate Java software installed.

The Client Detection Wizard Web page is included in web-server-clijava-dir
(see “Tag Words and Paths” on page 11-9.) The Web page is called
res_clijava_detection_wizard.html. Display the page in a Web browser on
the client computer to run the Detection Wizard.
Using the Java Client 11-23

Additional Installation Tasks
In addition, to install Swing Java classes, you must set the CLASSPATH
environment variable. The steps for setting this environment variable differ
depending upon the platform. See “Setting CLASSPATH” on page 11-25 for
more information.

Tip: If you are using a Web browser, you can install the Sun Java Plug-in instead of
the Swing Java classes. However, it is recommended you install the Swing Java
classes. If you want to install the Sun Java Plug-in, refer to the Sun Web site for more
information.

Installing swingall.jar

The swingall.jar file is included with Dynamic 4GL Java Client package; you
choose to install it as part of the installation process. After installation, you
must copy this file to the client computer. Where you copy the file depends
on your environment, as follows:

■ Netscape Communicator. You need Version 4.5 with full support of
JDK 1.1. If you have installed Netscape Communicator, install the
Swing package in:

C:\ProgramFiles\Netscape\Communicator\Program\java\classes

■ Microsoft Internet Explorer. Copy the swingall.jar file to
C:\swing-1.1. Avoid copying the file to a directory path that contains
spaces, such as C:\Program Files\Swing-1.1. Some programs have
problems recognizing spaces in the path name.

■ UNIX. Copy the swingall.jar file to a directory. If possible, copy the
file to your $FGLDIR/clijava/lib directory.

On computers that do not have a compiler or runtime system, you
can select any directory. For instance:

/usr/local/lib/java/swingall.jar.

It might be necessary to restart your browser.

■ Macintosh. Download the Swing installer from the Sun Java Web
site. Double-click the Swing 11-Install icon to begin the installation.
The installation wizard guides you through the installation steps. At
the appropriate prompt, choose the Runtime Only option.
11-24 Informix Dynamic 4GL User Guide

Additional Installation Tasks
Setting CLASSPATH

After installing the Swing Java classes, set the CLASSPATH environment
variable to include swingall.jar. The following directions describe how to set
the environment variable for UNIX, Windows 9x, Windows NT, and
Macintosh clients.

UNIX

Set the CLASSPATH environment variable as follows:

CLASSPATH=$FGLDIR/clijava/lib/swingall.jar:$CLASSPATH
export CLASSPATH

In order for CLASSPATH to be set appropriately each time a user starts an
application, you should place the CLASSPATH entry in the generic
/etc/fglprofile file or in each user’s .fglprofile file.

You must restart your browser for the setting to take effect.

Windows 9x

Edit your c:\autoexec.bat file and add the line:

SET CLASSPATH=C:\swing-1.1\swingall.jar;%CLASSPATH%

If you copied the swingall.jar file to a different directory, substitute the
appropriate directory for C:\swing-1.1.

When you are finished, reboot your computer for the changes to take effect.

Windows NT

1. Start the Control Panel.

2. Double-click the System icon.

The System Properties dialog box appears.

3. Click the Environment tab.
Using the Java Client 11-25

Additional Installation Tasks
4. Select the ClassPath environment variable in the System Variables
list box.

If the ClassPath environment variable does not exist, click any line in
the System Variables list box.

The current user must have the appropriate rights to set environment
variables. The environment variable needs to be set for all users (not
just for the current user).

5. In the Variable text box, enter CLASSPATH.

6. In the value text box, enter C:\swing-1.1\swingall.jar.

If you copied the swingall.jar file in another directory, change
C:\swing-1.1 to the appropriate file location.

If you have other CLASSPATH entries, separate them with a
semicolon (;).

7. Click Set.

8. Click OK.

9. Restart Netscape Navigator or Internet Explorer, if necessary.

Macintosh

Follow these steps to add the Swing classes to the Internet Explorer Class
Paths settings:

1. Start Internet Explorer.

It loads and you should get either a home page or a blank screen
(depending on your users settings). Select the Edit menu and then
select Preferences.

The Internet Explorer Preferences dialog box appears.

2. Click Java in the Web Browser settings list box.

The Java settings appear with the following panes: Java Options,
Class Paths, Security Options

3. In the Java Options pane, check the Enable Java checkbox and then
select Apple MRJ from the Java virtual machine list box.

Apple MRJ is more compliant to Sun’s Java standard.

4. In the Class Paths pane, click Add.

A Select Item dialog box appears.
11-26 Informix Dynamic 4GL User Guide

Additional Installation Tasks
5. Select the swingall.jar file.

The location depends on where you installed the folder. By default,
it is <volume>:Applications:Swing-1.1:swingall.jar.

On the Macintosh, path separators are colons (:).

6. Click Select.

A prompt appears that reminds you to restart Internet Explorer to
have the changes take effect. You should restart your browser before
using your new class path.

7. Click OK.

8. Check the Security Options panel to ensure that the following
conditions are set:

❑ Byte-code verification: Check All Code

❑ Network access: Applet Host Access

9. Restart your browser.

Testing Your Swing Installation

An HTML page is supplied to let you test your Swing installation. To perform
the test, navigate in your browser to:

http://web_server_dir:web_server_port/clijava/res_test_swing.html
Using the Java Client 11-27

Additional Installation Tasks
You should see the page shown in Figure 11-2.

Unjarring the cjac.jar file

The cjac.jar file that you placed in the servlets directory must be unjarred to
allow the Java Client to access the files (see “Running the Shell Script” on
page 11-15 for UNIX or “Installing Web Server Components” on page 11-22
for Windows).

Tip: The web_server_servlet_dir_alias must be reached through the alias “servlets;”
however, this need not be the only alias. When using servlets and applets, remember
that names are case sensitive.

Figure 11-2
CLI-Java Graphical

Swing Test Page
11-28 Informix Dynamic 4GL User Guide

Additional Installation Tasks
Follow these steps to unjar the file:

1. Navigate to web_server_servlet_dir and enter:
jar -xvf cjac.jar

This command is available on both UNIX and Windows NT.

If jar is not a command of your system, check your JDK or JRE instal-
lation and the current environment. This command is part of the
standard JDK or JRE package.

This step can be skipped if you can set CLASSPATH using directives
in your Web server configuration files, but it is not recommended
that you do so. Refer to your Web server documentation for more
information. If you edit a configuration file, you might need to restart
the Web server.

After you unjar the cjac.jar file, you should see the following direc-
tory structure underneath web_server_servlet_dir:

com
lib
fglTestServlet.class
cjac.jar
META-INF

2. You can now safely remove the cjac.jar file:
rm web_server_servlet_dir/cjac.jar (Unix)
del web_server_servlet_dir\cjac.jar (Windows NT)

Configuring the Servlet Engine for Use with the Java Client

If you have a properly installed Web server and servlet engine, you should
already be able to run basic servlets. Your servlet engine often provides
example servlets for you to verify this setup. If your Web server is not yet
capable of running JSDK 2.0 servlets, refer to your Web server or servlet
engine documentation for assistance.

Additional steps must be taken to enable your servlet engine to recognize
and interact with components of the Java Client. The way in which these
modifications are made differ depending on the Web server and servlet
engine you are using. A general explanation of what must be done and
examples on a few of the major platforms are in the following sections.
Using the Java Client 11-29

Additional Installation Tasks
Servlet Mapping

When the user requests an application via the browser, the CJA applet makes
a call to the Cli Java Application Connector (CJAC) servlet. CJA launches CJAC
using the URL /servlets/ .Your Web server environment must be capable of
recognizing such calls and invoking the servlet engine when they are
received.

This allows the servlet engine to run a target file called with the name
/servlets/ as a servlet. This is often referred to as mapping. Some servlet
engines are mapped to /servlet/ (not /servlets/) by default. Therefore, it
might be necessary to configure the Web server to recognize calls to
/servlets/ as well. This is often done by assigning a style. An example using
Netscape Enterprise Server appears in “Netscape with JRun on UNIX” on
page 11-31.

Servlet Aliases

In addition, you must create two servlet aliases so that calls placed to the alias
will call the target servlet. Your Web server or servlet engine should have a
facility for adding servlet aliases.

The first alias is for the example servlet fglTestServlet. This servlet should be
located in your servlets directory upon installation of cjac.jar.

fglTestServlet is not part of the functional product but is provided to allow
you to verify a working environment and to illustrate the concept of servlet
aliases. You will need to create an alias for this servlet as follows:

This alias enables the Web server to interpret:

http://myserver/servlets/TestServlet

as a call to invoke the servlet fglTestServlet.

Alias Name Class Name

TestServlet fglTestServlet
11-30 Informix Dynamic 4GL User Guide

Additional Installation Tasks
All servlets should reside in or underneath the servlets directory. Because
fglTestServlet is located in the servlets directory itself (for example,
Apache/servlet_directory/fglTestServlet), you could invoke this servlet by
pointing to:

http://myserver/servlets/fglTestServlet

However, it might not always be convenient or desirable to call the servlet by
its filename.

The CJA calls the CJAC.class file using the alias cjac. The CJAC.class file
resides in the following directory after you unjar the cjac.jar file:

servlet_directory/com/informix/communication

You must create an alias that lets the servlet engine know to look for cjac in
this directory structure either within the .jar file or on the file system under
the servlets directory:

The following examples are for specific Web server environments.

Apache with Apache Jserv on UNIX

The invocation of servlets is handled by the jserv.properties file, which
should already be configured to run servlets appropriately.

To add the needed aliases, find the servlet.properties file, typically located in
the directory where Apache JServ is installed (for example, in
Apache/Apache Jserv). Add the following entries:

servlet.cjac.code=com.fourjs.communication.CJAC
servlet.TestServlet.code=fglTestServlet

Netscape with JRun on UNIX

Use the JRun administration tool to configure your servlet engine for use
with Java Client components.

Alias Name Class Name

cjac com.informix.communication.CJAC
Using the Java Client 11-31

Additional Installation Tasks
To add the mapping to /servlets/

1. Start JRun administration.

2. Select jse.

3. Click the Service Config button.

4. Select the Mappings tab.

5. Click Add.

6. Add the following entries and click Save:

To add the aliases

1. Start JRun administration.

2. Select jse.

3. Click Service Config.

4. Select the Aliases tab.

5. Click Add.

6. Add the following entries and click Save:

These servlets need not be pre-loaded.

When using JRun as your servlet engine, your servlets directory need not be
located within JRun. The file jrun.properties, located in
/JRun_install_directory/jsm-default/services/jse/properties, allows you to
direct JRun to look for servlets in directories other than /JRun/servlets and
/JRun/jsm-default/services/jse/servlets, which are the default locations.

Virtual Path/Extension Servlet Invoked

Servlet Invoker

Name Class Name

TestServlet fglTestServlet

cjac com.informix.communication.CJAC
11-32 Informix Dynamic 4GL User Guide

Additional Installation Tasks
Add a pointer to your Web server servlets directory to the servletdir

setting. For example, you might modify the servletdir entry as follows:

servletdir=/usr/jrun/jsm-default/services/jse/servlets,/jrun/
servlets,/usr/Apache/servlets

where servlets is your main servlets directory (the location in which cjac.jar
was installed). This can also be done using the JRun administration utility as
follows:

1. Start JRun administration.

2. Select jse.

3. Click Service Config.

4. Select the General tab.

5. Add your servlets directory to the Default Servlets Dir entry.

6. Click Save.

For example:
C:/JRun/jsm-default/services/jse/servlets,C:/
JRun/servlets,C:/Inetpub/wwwroot/servlets

where C:/Inetpub/wwwroot is your Web server root directory and
servlets is your servlets directory.

You must restart JRun for the changes to take effect.

If it has not already been done, it might also be necessary to assign a style
within your Netscape Enterprise Server, as follows:

1. Run the Netscape Administration Server.

2. Click Server Preferences in the toolbar.

3. Click View Server Settings in the side panel.

4. Click Configuration Styles in the toolbar.

5. Click Assign Style in the side panel.
Using the Java Client 11-33

Additional Installation Tasks
6. Fill in the requested field with servlets/* and choose JRun as the
style.

7. Click OK and Apply.

For example:
:8090/ servlets/*

Style: JRun

Sun Java Web Server on Windows NT

Configuration for the Sun Java Web server is done using an applet in your
browser. Call your Web server on port 9090 which is the JavaWebServer
default administration port (you can change this).

When you connect to the administration port with your browser, you will
need to provide a login and password. The initial default will be admin for
both fields.

To add mapping to /servlets/

1. Select Web Service from the JavaWebServer Services menu.

2. Click Manage.

3. Click Servlet Aliases in the directory tree under Setup.

4. Click Add and add the following entries:

5. Click Save.

To add aliases for fglTestServlet and CJAC

1. Click Servlets in the toolbar.

2. Select Add from the directory tree and add the following entries:
ServletName: TestServlet
ServletClass: fglTestServlet

3. Select No in the Bean Servlet box.

Alias Servlet Invoked

/servlets/ invoker
11-34 Informix Dynamic 4GL User Guide

Additional Installation Tasks
4. Click Add.

You see another screen with Configuration and Properties tabs. You
need not make further changes.

5. Click Load to complete the creation of the alias.

6. Repeat for CJAC, adding the following entries:
ServletName: cjac
ServletClass: com.informix.communication.CJAC

Verifying Your CLASSPATH Setting on the Web Server

If your Web server was capable of running servlets before you began the
installation, your class path should already include the correct settings. At a
minimum, your settings must include pointers to:

■ the JSDK classes (jsdk.jar).

■ the JDK classes and source files.

■ the classes specific to your servlet engine (for example:
ApacheJServ.jar).

■ the Swing classes, if your client computer is also your Web server
(swingall.jar).

A sample setting on Windows NT follows:

C:\Jsdk2.0\lib\jsdk.jar;C:\jdk1.1.8\lib\classes.zip;

C:\jdk1.1.8\src;C:\JRun\lib;C:\swing-1.1\swingall.jar

Depending on your Web server environment, you can set CLASSPATH in
several ways. Refer to your Web server and servlet engine documentation for
more information.

Testing the Installation

After you perform the above steps, you should be able to run servlets from
your web_server_servlet_dir, including CJAC. Testing your installation will
involve calling both the provided fglTestServlet and the CJAC servlet.

To test this installation, enter the following URL into your browser:

http://web_server:web_server_port/servlets/TestServlet
Using the Java Client 11-35

Additional Installation Tasks
You should see the HTML page shown in Figure 11-3.

If you instead see a page similar to one shown in Figure 11-4, it is likely that
CLASSPATH is not properly set. Refer to your Web server or servlet engine
documentation for more information. The files not found by your Web server
often provide clues as to what components are missing from your
CLASSPATH setting.

Figure 11-3
Successful

Servlet Test
Results Page

Figure 11-4
Servlet Test
Error Page
11-36 Informix Dynamic 4GL User Guide

Configuring the Java Client
To test the CJAC servlet, enter the following URL into your browser:

http://web_server:web_server_port/servlets/cjac?TEST

This entry calls the CJAC servlet with the parameter TEST. The cjac.cnf file,
located in web_server_servlet_dir/lib, directs cjac to display the file
res_installation_check.html, located in the same directory.

You should see the HTML page shown in Figure 11-5.

If you do not see this page, check your CLASSPATH settings.

You might also verify that the cjac.cnf file is located in your
web_server_servlets_dir/lib directory.

Configuring the Java Client
Before running a Dynamic 4GL application for display as a Java applet, you
must specify an appropriate environment in which to run the application and
supply CJAC with information about starting the application. In addition,
you must configure your environment to handle applets.

Figure 11-5
Successful CJAC

Servlet Test
Results Page
Using the Java Client 11-37

Editing the cjac.cnf File
These steps involve modifications to two files included in the Java Client
package:

■ cjac.cnf

■ clijava.cnf

Editing the cjac.cnf File
The cjac.cnf file is used by the Cli Java Application Connector (CJAC) to
determine the proper environment and set of commands to use to execute a
called application. It is located in the web_server_servlet_dir/lib directory.

The cjac.cnf file is first read when CJAC is launched (at application startup),
and subsequently every 10 seconds. Changes do not take effect, however,
until the 4GL application is restarted.

In general, configuration using cjac.cnf involves three tasks:

■ Setting environment variables

■ Specifying commands and arguments for application execution

■ Setting general parameters governing CJAC behavior

Setting Environment Variables

When CJAC runs Dynamic 4GL locally, you must set environment variables
to point to your local environment. A list of variables to set for both UNIX and
Windows NT systems appears on p. 11-39.

You must either set all the necessary variables (sometimes with the default
values) or comment out those that do not apply using a ‘#’ character.

For more information about environment variables, see Appendix A and the
INFORMIX-4GL Reference Manual.

You can set environment variables either as defaults for all applications or
specific to a given application. The format for setting the variables is as
follows:

cjac.app.<app key>.env.<env variable> = "<value>"|@<substitution>
11-38 Informix Dynamic 4GL User Guide

Editing the cjac.cnf File
The <app key> is the value you assign to the CJA when the CJA is called
within an HTML page. You can specify any value you choose for each appli-
cation. For more information about configuring CJA, see “Setting CJA
Parameters” on page 11-55.

For example, to set DBDATE for the stores7 application, you would include
the following entry:

cjac.app."stores7".env.DBDATE = "DMY4/"

You can also create default settings for variables that will remain the same for
all applications. This is done by replacing the <app key> with *. If you
wanted DBDATE set to DMY4 for all applications, you would specify:

cjac.app.*.env.DBDATE = "DMY4/"

Environment Variables on UNIX

The following environment variables must be set:

■ LD_LIBRARY_PATH

■ REMOTEUSER

(See “Substitute Environment Variables” on page 11-40.)

■ INFORMIXSERVER

■ INFORMIXDIR

■ CLIENT_LOCALE

■ FGLPROFILE

■ FGLGUI

■ FGLSERVER

(See “Substitute Environment Variables” on page 11-40.)

■ FGLLDPATH

■ DBPATH

■ PATH

■ FGLDIR
Using the Java Client 11-39

Editing the cjac.cnf File
Environment Variables on Windows NT

The following environment variables must be set:

■ PATHEXT

■ SystemRoot

■ REMOTEUSER

(See “Substitute Environment Variables” on page 11-40.)

■ INFORMIXDIR

■ CLIENT_LOCALE

■ FGLPROFILE

■ FGLGUI

■ FGLSERVER

(See “Substitute Environment Variables” on page 11-40.)

■ PATH

■ FGLDIR

Substitute Environment Variables

The following two substitute environment variables are used for
environment settings in cjac.cnf:

$(FGL_GUISRVNUM)

$(FGL_AUTHUSER)

FGLSERVER defines the Web server and port number on which CJAC is
running. The $(FGL_GUISRVNUM) variable captures the port number. Thus,
your FGLSERVER entry should look like:

FGLSERVER=10.0.0.100:$(FGL_GUISRVNUM) or
FGLSERVER=WebServer:$(FGL_GUISRVNUM)

REMOTEUSER defines the user connecting to the application. The
$(FGL_AUTHUSER) variable captures information about the user declared to
the Web server. Thus, your REMOTEUSER entry should look like:

REMOTEUSER="$(FGL_AUTHUSER)"
11-40 Informix Dynamic 4GL User Guide

Editing the cjac.cnf File
Setting Commands and Arguments for Application Execution

You must also define how and where an application is to be executed. This is
accomplished by creating or modifying two entries:

cjac.app.*|"<app key>".cmd = "<command>"
cjac.app.*|"<app key>".arg = "<argument>"[, ..]

The command entry tells CJAC how an executable is run on the local system.
For UNIX, the <command> is usually /bin/sh ; for Windows NT, it is usually
cmd.exe .

The argument entry provides the execution instructions.

Separate command and argument entries for the same <app key> can be
combined. For example:

cjac.app.*.cmd = "/bin/sh"
cjac.app.*.arg = " -c"

is equivalent to

cjac.app.*.cmd = "/bin/sh -c"

Setting General Parameters Governing CJAC Behavior

You must also specify a number of parameter settings that govern the
behavior of CJAC. This section describes the following parameters:

■ cjac.comm.client.http.requestTimeout

■ cjac.comm.client.http.requiredBandwidth

■ cjac.comm.client.http.getTimeout

■ cjac.comm.server.task.reannounceDelay

■ cjac.comm.server.task.startUpTimeout

■ cjac.comm.server.tcp.basePort

■ cjac.comm.server.tcp.maxConnection

■ cjac.comm.server.task.portRange

■ cjac.comm.server.task.reuseDelay

■ cjac.setup.check.arg

■ cjac.setup.check.enabled
Using the Java Client 11-41

Editing the cjac.cnf File
cjac.comm.client.http.requestTimeout

Specifies, in microseconds (ms), the delay after which CJAC replies to the GUI
client if the application does not reply. Specify this parameter as an integer.
The default is 20000 .

For example:

cjac.comm.client.http.requestTimeout = 20000

cjac.comm.client.http.requiredBandwidth

Specifies, in bytes per second, the required bandwidth for communication
between the 4GL application and CJAC. Specify this parameter as an integer.
The default is 500 .

For example:

cjac.comm.client.http.requiredBandwidth = 500

cjac.comm.client.http.getTimeout

Specifies, in microseconds (ms), the maximum time the client waits before
placing a new HTTP GET request after the last reply from the application.
After this timeout, the servlet assumes that the client is not responding and
shuts down the connection. Specify this parameter as an integer. The default
is 30000 .

For example:

cjac.comm.server.http.getTimeout = 30000

cjac.comm.server.task.reannounceDelay

Specifies, in microseconds (ms), the maximum time CJAC waits before
reannouncing a restarted application to the client when the application is
using RUN WITHOUT WAITING. Specify this parameter as an integer. The
default is 5000 .

For example:

cjac.comm.server.task.reannounceDelay = 5000
11-42 Informix Dynamic 4GL User Guide

Editing the cjac.cnf File
cjac.comm.server.task.startUpTimeout

Specifies, in microseconds (ms), the maximum time CJAC takes to start an
application. After this time lapse, CJAC attempts to restart the application.
Specify this parameter as an integer. The default is 10000 .

For example:

cjac.comm.server.task.startUpTimeout = 10000

cjac.comm.server.tcp.basePort

Specifies, as an integer, the base TCP port that CJAC listens on to communicate
with the 4GL application. Normally, you should not change this value; the
runner uses it to communicate with CJAC. The default is 6400 .

For example:

cjac.comm.server.tcp.basePort = 6400

cjac.comm.server.tcp.maxConnection

Specifies, as an integer, the maximum permissible number of simultaneous
TCP connections to CJAC. The default is 10000 .

For example:

cjac.comm.server.tcp.maxConnection = 10000

cjac.comm.server.tcp.portRange

Specifies, as an integer, the range of ports on which CJAC listens. For example,
if the value specified for cjac.comm.server.tcp.basePort is 6400 and the value
for cjac.comm.server.tcp.maxConnection is 10000, CJAC listens on ports 6400
through 16399 and allows 10000 applications to connect at the same time. The
default is 10000 .

For example:

cjac.comm.server.tcp.portRange = 10000
Using the Java Client 11-43

Editing the cjac.cnf File
cjac.comm.server.tcp.reuseDelay

Specifies, in microseconds (ms), the maximum time CJAC waits before
reusing a port for another application. Specify this parameter as an integer.
The default is 20000 .

For example, if user 1 runs application A on port 6600, and completes
processing, and then user 2 runs application A again before the end of the
reuse delay, CJAC listens to port 6601. If user 3 then runs the same application
after the end of the reuse delay, CJAC listens again on port 6600.

For example:

cjac.comm.server.tcp.reuseDelay = 20000

cjac.setup.check.arg

Specifies the location of the test page. Specify this parameter as a string
(usually, an HTML page). The root directory is the value of
web_server_servlet_dir (see “Tag Words and Paths” on page 11-9).

For example:

cjac.setup.check.arg = "/lib/res_installation_check.html"

cjac.setup.check.enabled

Specifies whether troubleshooting mode is enabled. Specify this parameter as
a string. The default is true .

For example:

cjac.setup.check.enabled = true
11-44 Informix Dynamic 4GL User Guide

Sample cjac.cnf file
Sample cjac.cnf file
The following sample cjac.cnf file is a generic example, rather than a repre-
sentation of exactly what will exist on any particular system:

###
Troubleshooting
###

##################
Defines whether the troubleshooting mode is enabled
Default value : true
Syntax :
cjac.setup.check.enabled = {true|false}
cjac.setup.check.enabled = true

##################
Defines the test page
The root directory corresponds to web_server_servlet_dir
(see doc) Default value : "/lib/res_installation_check.html"
Syntax :
cjac.setup.check.arg = "<URL>"
cjac.setup.check.arg = "/lib/res_installation_check.html"

##
CJAC to Server (runner, DVM, application) communication
###

##################
Base TCP Port cjac listens to, in order to communicate with
the 4GL application. DO NOT CHANGE THIS VALUE, unless a support
engineer tells you to do it.
Default value : 6400
Syntax :
cjac.comm.server.tcp.basePort = <tcp port>
cjac.comm.server.tcp.basePort = 6400

##################
Maximum number of simultaneous TCP connections to cjac
Example : if *.basePort = 6400 and *.maxConnection = 10000, then
cjac will listen from port 6400 to port 16399 and allow 10000
applications to connect at the same time.
Default value : 10000
Syntax :
cjac.comm.server.tcp.portRange = <number>
cjac.comm.server.tcp.portRange = 10000

##################
Delay (in ms) cjac waits before reusing this port for another
application
Default value : 20000
Syntax :
Using the Java Client 11-45

Sample cjac.cnf file
cjac.comm.server.tcp.reuseDelay = <number>
cjac.comm.server.tcp.reuseDelay = 20000

##
CJAC to Client (CJA, ...) communication
##

##################
Required bandwidth for communication between the 4GL application
and cjac (in b/s)
Default value : 500
Syntax :
cjac.comm.client.http.requiredBandwidth = <n>
cjac.comm.client.http.requiredBandwidth = 500

##################
Maximum time (in ms) for the client to place a new GET request
after receiving data from the servlet - after this time the
servlet assumes the client died and shuts down the corresponding
application
Default value : 30000
Syntax :
cjac.comm.server.http.getTimeout = <number>
cjac.comm.server.http.getTimeout = 30000

##################
After this amount of time, the client will assume that an open
request is locked, break this request, and send a retry.
Default value : 20000
Syntax :
cjac.comm.client.http.requestTimeout = <number>
cjac.comm.client.http.requestTimeout = 20000

##################
Maximum time (in ms) for application startup. After this timeout
occurs, CJAC will try to restart the application.
Default value : 10000
Syntax :
cjac.comm.server.task.startUpTimeout = <number>
cjac.comm.server.task.startUpTimeout = 10000

##################
When using a RUN WITHOUT WAITING, waits a maximum of time (in
ms) before reannouncing a newly started application to the
client.
Default value : 5000
Syntax :
cjac.comm.server.task.reannounceDelay = <number>
cjac.comm.server.task.reannounceDelay = 5000
11-46 Informix Dynamic 4GL User Guide

Sample cjac.cnf file
##
Application configuration
###

##################
Environment
Default value :
No default value is provided. If you forget to set an
environment variable, it will not be set.
Syntax
cjac.app.*|"<app key>".env."<env variable>" =
"<value>"|@<substition>

Example of configuration for all the applications
cjac.app.*.env."FGLDIR" = "/usr/fgl2c"
cjac.app.*.env."FGLGUI" = 1
cjac.app.*.env."FGLPROFILE" = "/usr/fgl2c/etc/clijava.cnf"
cjac.app.*.env."FGLSERVER" = "localhost:@SRVNUM"
cjac.app.*.env."INFORMIXDIR" = "/usr/informix"
cjac.app.*.env."INFORMIXSERVER" = "on_informix"
cjac.app.*.env."LD_LIBRARY_PATH" = "/lib"
cjac.app.*.env."PATH" = "/usr/fgl2c/bin:/bin:/usr/bin"
cjac.app.*.env."REMOTEUSER" = "$(FGL_AUTHUSER)"

Example of configuration specifically for the stores application
cjac.app."stores".env."CLIENT_LOCALE" = "en_us.8859-1"
cjac.app."stores".env."DBPATH" = "/d4gldemo"
cjac.app."stores".env."FGLLDPATH" = "/d4gldemo"
cjac.app."stores".env."INFORMIXSERVER" = "on_stores"

This would be the same as writing these extra lines :
cjac.app."stores".env."FGLDIR" = "/usr/fgl2c"
cjac.app."stores".env."FGLGUI" = 1
cjac.app."stores".env."FGLPROFILE"= "/usr/fgl2c/etc/clijava.cnf"
cjac.app."stores".env."FGLSERVER" = "localhost:@SRVNUM"
cjac.app."stores".env."INFORMIXDIR" = "/usr/informix"
cjac.app."stores".env."LD_LIBRARY_PATH" = "/lib"
cjac.app."stores".env."PATH" = "/usr/fgl2c/bin:/bin:/usr/bin"
cjac.app."stores".env."REMOTEUSER" = "$(FGL_AUTHUSER)"

##################
Startup
Default value :
No default value is provided.
Syntax
cjac.app.*|"<app key>".cmd = "<command>"
cjac.app.*|"<app key>".arg = "<argument>"[, ..]

Example of configuration for the stores application
cjac.app."stores".cmd = "/bin/sh"
cjac.app."stores".arg = "-c"
cjac.app."stores".arg = "(cd /d4gldemo; exec
/usr/fgl2c/bin/fglrun d4.42r)"
Using the Java Client 11-47

Sample cjac.cnf file
On Windows NT, these settings might be:

cjac.app.*.env."REMOTEUSER" = "$(FGL_AUTHUSER)"
cjac.app.*.env."INFORMIXDIR" = "c:\\informix"
cjac.app.*.env."CLIENT_LOCALE" = "en_us.8859-1"
cjac.app.*.env."FGLPROFILE" ="C:\\usr\\fgl2c\\etc\\clijava.cnf"
cjac.app.*.env."FGLGUI" = "1"
cjac.app.*.env."FGLSERVER" = "localhost:$(FGL_GUISRVNUM)"
cjac.app.*.env."PATH" =
"C:\\WINNT;\\SYSTEM32;C:\\usr\fgl2c\\bin;C:\\informix\\bin"
cjac.app.*.env."FGLDIR" = "C:\\usr\\fgl2c"
cjac.app.*.env."PATHEXT" = ".COM;.EXE;.BAT;.CMD;.VBS;.JS"
cjac.app.*.env."SystemRoot" = "C:\\WINNT"

cjac.app.*.cmd = "cmd.exe"
cjac.app.*.arg = "/c"
cjac.app."stores".arg = "cd /d C:\\d4gldemo

&& C:\\usr\\fgl2c\\bin\\fglrun.exe d4.42r"

Note that you may also create useful constants:

FGLDIR=C:\\usr\\fgl2c

cjac.app.*.env.FGLPROFILE = "$(FGLDIR)\\etc\\clijava.cnf"

Local and Remote Connections to the Application Server

If your Web server is connecting to the Application Server on a remote
computer, you will need to make some adjustments to your cjac.cnf file.

When starting an application locally (with the Web server and application
server on the same computer), the application server environment variables
can be set directly by cjac.cnf.

When the Web server is connecting to the application server remotely, the
environment variables specific to the application server cannot be set locally.
Instead, the environment variables will usually be set by a script run on the
remote application server immediately before running the application. The
script and application will usually be run using a command such as rlogin,
rexec, rsh, telnet, or ssh. The PATH environment variable within cjac.cnf
allows CJAC to find the correct executable to run the remote connection
mechanism.

The arguments for the remote command must be defined in the
cjac.app.*.arg entry.
11-48 Informix Dynamic 4GL User Guide

Editing the clijava.cnf File
The following example shows cjac.cnf entries defined for remote application
server access:

PATH="/bin"

(assuming rsh is located within /bin)

cjac.app."stores".cmd = "/bin/sh"
cjac.app."stores".arg = "-c"
cjac.app."stores".arg = "rsh AppServer -l

$(FGL_AUTHUSER)/d4gldemo/runwout.sh $(FGL_GUISRVNUM)"

The runwout.sh file would look something like:

#!/bin/sh
FGLDIR=/usr/fgl2c
export FGLDIR
PATH=$FGLDIR/bin:/bin:/usr/bin:$PATH
export PATH
FGLGUI=1
export FGLGUI
FGLSERVER=WebServer:$1
export FGLSERVER
LD_LIBRARY_PATH=/lib
export LD_LIBRARY_PATH
INFORMIXSERVER=myserver
export INFORMIXSERVER
INFORMIXDIR=/informix
export INFORMIXDIR
FGLPROFILE=$FGLDIR/etc/clijava.cnf
export FGLPROFILE
cd /d4gldemo
exec $FGLDIR/bin/fglrun d4.42r

Editing the clijava.cnf File
The clijava.cnf file plays a role similar to that of the file specified by your
FGLPROFILE environment variable (the default value for FGLPROFILE is
fglprofile). While the entries within this file configure the behavior of the
Dynamic 4GL compiler, entries in the clijava.cnf file configure the behavior
of the Cli Java applet.

The clijava.cnf file is located in the $FGLDIR/etc directory on the application
server. You can display the file for more information about specific entries.
Using the Java Client 11-49

Editing the clijava.cnf File
The previous section (assuming the application server and Web server are on
the same computer), your cjac.cnf file must include an entry that defines
FGLPROFILE for each application you want to display through the Java
Client. The default setting is for clijava.cnf because this file contains entries
specific to Java applet configurations. However, you do not need to use
clijava.cnf as your FGLPROFILE value. The only requirement for your
FGLPROFILE file is that it contain the following three entries:

fglrun.interface = "clijava.res"
Menu.style = 1
gui.toolBar.enabled = 1

When configuring your application for display as a Java applet, it is likely
that you will modify your existing fglprofile file as previously shown, then
add entries contained within clijava.cnf to define how the applet will
behave.

The following sections describe configuration elements within clijava.cnf.

Changing Colors

You can use the following entries to control the colors that appear in the
foreground and background. You can also specify the exact shade of a color
you want to use; for instance, if you want to use ivory white instead of white.

The following table lists the different color entries.

Background and Foreground Color Entries Description

gui.java.default.color.fg Defines the default foreground color.

gui.java.default.color.bg Defines the default background color.

gui.java.default.color.entry Defines the default color for entries.

gui.java.default.color.entry.selected Defines the default color for selected
entries.

gui.java.fglcolor.fg.color Defines the RGB color used when
specifying a given foreground color.
11-50 Informix Dynamic 4GL User Guide

Editing the clijava.cnf File
Configuring Interface Elements

You can configure different areas of the CJA interface. For instance, you can
specify the behavior of the following interface elements:

■ Cursor blink rate

■ Fonts

■ Frames

■ Toolbars

■ Menus

The following table lists these different interface element entries.

Interface Element Entries Description

gui.java.screen.caret.blinkRate Defines the blink rate of a
caret (in ms). The caret is the
cursor that appears in entry
fields.

gui.java.screen.workspaceFrame.font.face Defines the font used for the
WorkspaceFrame.

gui.java.screen.workspaceFrame.font.absoluteSize Defines the relative size of
fonts used in the Java client.

gui.java.screen.controlFrame.width Defines the width of the
ControlFrame (in characters).
The gui.button.width setting
is ignored by the Java Client.

gui.java.screen.controlFrame.button.icon.visible Defines whether each icon
associated with a menu
appears.

gui.java.screen.toolBar.floatable Defines whether the toolbar
can be moved. When the
toolbar is floating, small
“grips” appear on the left
side.

gui.java.screen.toolBar.icon.path Defines the path to the toolbar
icons.

 (1 of 2)
Using the Java Client 11-51

Editing the clijava.cnf File
Font Types and Known Font Equivalents

The following list shows the supported font types and their known font
equivalents. The font types correspond to entries in the clijava.cnf file. You
can set the font type for fonts in the WorkFrame and ControlFrame of the CJA.

gui.java.screen.menuBar.visible Defines whether the menu
bar is visible.

gui.java.screen.menuBar.static.help.visible Defines whether the static
menuBar ‘help’ entry is
visible.

gui.java.screen.menuBar.static.help.label Defines the static menuBar
entry ‘help’ label.

gui.java.screen.menuBar.static.help. about.visible Defines whether the static
menuBar ‘about’ entry is
visible.

gui.java.screen.menuBar.static.about.label Defines the static menuBar
entry ‘about’ label.

Font Type Known Equivalents

Dialog Arial, Helvetica

DialogInput Courier, Courier New

Monospaced Courier, Courier New

SansSerif Arial, Helvetica

Serif Palatino, Times
New Roman

Interface Element Entries Description

 (2 of 2)
11-52 Informix Dynamic 4GL User Guide

Editing the clijava.cnf File
Configuring Other Java Applet Elements

You can also configure the behavior of these elements of a Java applet:

■ About Box

■ Progress Bar

The following table lists these interface element entries.

Interface Element Entries Description

gui.java.screen.aboutBox.title Defines the title of the About box. The title
appears at the top of the About box.

gui.java.screen.aboutBox.label Defines the label of the About box. The
label appears below the About box logo.

gui.java.screen.aboutBox.logo Defines the About box logo. The logo
appears in the middle of the About box.

gui.java.screen.aboutBox.url Defines the About box URL. This URL is
called when the user clicks the About box
logo. Because of security restrictions, a
Java applet can connect only to the server
from which it was downloaded.

gui.java.screen.progressBar.visible Defines whether the progress bar is
visible.

gui.java.screen.progressBar.message.
send

Defines the message displayed by the
progress bar when sending data.

gui.java.screen.progressBar.message.
receive

Defines the message displayed by the
progress bar when receiving data.

gui.java.screen.progressBar.message.
refresh

Defines the message displayed by the
progress bar when refreshing data.
Using the Java Client 11-53

Running an Application with the Java Client
Running an Application with the Java Client
To run your application as a Java applet within a browser, you must first
create an HTML page that calls the Cli Java Applet. The CJA must reside in the
web_server_clijava_dir directory in the documents section of your Web server.

Creating the HTML Page
The HTML page you create will be the page from which users will launch the
application. You will need to create a separate HTML page for each appli-
cation you want to run. This page can contain anything you like, but it must
include a proper call to the CJA.

The syntax for the applet call is as follows:

<APPLET
 CODE="com.informix.gui.applet.CJA"
 ARCHIVE="cja.jar"
 WIDTH=<width in pixels>
 HEIGHT=<height in pixels>
 CODEBASE=<path to archive>
 <PARAM NAME="AppKey" VALUE="stores">
</APPLET>

The CODE and ARCHIVE entries are fixed and should not be changed.

The WIDTH and HEIGHT definitions are measured in pixels and define the
size of the application within the browser.

CODEBASE is used to specify the location of cja.jar if it is not in the current
directory. In other words, if your HTML page resides in a directory other than
web_server_clijava_dir, you will need to set CODEBASE to
web_server_clijava_dir.

For example, if your HTML page resides in
web_server_dir/htdocs/clijava/stores, you would need to set CODEBASE
either to the directory one level above the current directory:

CODEBASE=".."

or to the absolute directory path:

CODEBASE="/htdocs/clijava"
11-54 Informix Dynamic 4GL User Guide

Setting CJA Parameters
The PARAM NAME and VALUE settings indicate a specific value for the appli-
cation you want to call. This value is used by cjac.cnf entries to define
environment variables and execution commands for specific applications.
See “Editing the cjac.cnf File” on page 11-38 for more information.

For more information on how cjac.cnf uses CJA Parameters, see “Setting CJA
Parameters” on page 11-55.

A sample HTML page has been created for you. This page is called
index.html and is located in the web_server_clijava_dir/stores directory.

Setting CJA Parameters
You can set many parameters that define CJA behavior. Most of these param-
eters are included in the clijava.cnf file but can be defined in the HTML page
calling CJA as well. The remainder can only be defined within the HTML
page.

For parameters that can be set in both the HTML page and clijava.cnf,
clijava.cnf settings take precedence, with the exception of bgimage and
bgcolor, as explained in “Parameter Settings not Available in clijava.cnf.” If a
parameter is not defined in either place, the default setting is used.

Parameter Settings not Available in clijava.cnf

You can set only the following four parameters directly in the HTML page
calling CJA:

■ AppKey. This provides a link to the cjac.cnf file by assigning a value
to the desired application. There is no default setting. A common
example of this setting is:

<PARAM="AppKey" VALUE="stores">

■ CJACPath. This provides the path to CJAC. The default value is
/servlets/cjac. You will not need to define this parameter unless your
CJAC does not reside in this location (not recommended). An
example setting is:

<PARAM="CJACPath" VALUE="/servlets/cjac"
Using the Java Client 11-55

Running the Application
■ bgimage. This defines the background image of the applet and
overrides the gui.java.screen.bg.image setting in clijava.cnf. There
is no default setting. An example setting is:

<PARAM="bgimage" VALUE="/clipart/bg.gif">

■ bgcolor: This defines the background color of the applet, and
overrides the gui.java.screen.bg.color setting in clijava.cnf. This
parameter uses the #RRGGBB syntax. The default is #FFFFF (white).
An example setting is:

<PARAM="bgcolor" VALUE="#FFFFFF">

Parameter Settings Available in clijava.cnf

Any entry in clijava.cnf can be defined instead within the HTML page as an
applet parameter. This can be useful when you want to display the same
application to different users using different parameter settings. Entries in
clijava.cnf take precedence over applet definitions in the HTML page.

For example, if you want to define the clijava.cnf entry
gui.java.screen.toolBar.floatable in the HTML page, you would add the
following parameter setting to the applet definition:

<PARAM NAME="gui.java.screen.toolBar.floatable" VALUE="true">

Running the Application
Before launching your application from the browser, you should verify that
the application runs properly in a character-based or Windows environment.
You should also verify that your cjac.cnf file contains the proper entries.

To run the application, point your browser to the HTML page you created. For
example, to call the stores application using the provided index.html page,
you would enter:

http://web_server:web_server_port/web_server_clijava_dir_alias/
stores/index.html

After about 30-60 seconds, you should see the basic stores application
displayed in the browser.
11-56 Informix Dynamic 4GL User Guide

Java Client Enhancements
The reason for the initial delay is that the CJA must be downloaded into
memory the first time it is called. After the CJA is resident in memory, the
application will execute more quickly. The CJA remains in memory as long as
the browser remains open.

Your application should function just as it did when running in character or
Windows clients, with the exceptions noted in “Java Client Limitations” on
page 11-8.

Java Client Enhancements
You can make the following enhancements to the Java Client interface:

■ Add JavaScript to call an applet

■ Use the Java Launcher to prepare Cli Java Applet startup.

■ Embed the Cli Java Applet in tables, text, and so on.

See the supplementary HTML documentation included with the Java Client
package for more information.
Using the Java Client 11-57

12
Chapter
Using the Windows Client
In This Chapter . 12-3

Windows Client Architecture 12-3
Windows Client Requirements 12-4

Windows 3.1 Requirements 12-4
Monitor Requirements 12-4

Dynamic 4GL Server Requirements 12-5
Remote UNIX Computer 12-5
Remote Windows NT Computer 12-5

Installing the Windows Client. 12-5
After the Installation 12-6

Installing the Windows Client on a Network 12-8

Starting and Configuring the Windows Client 12-9
Starting the 4GL Server 12-9
Creating a Connection 12-9

Command-Line String Information 12-10
Connection Checking. 12-11

Example . 12-12
Debugging the Connection 12-13

Windows Client Language 12-13
Setting the Server Environment Variables 12-14
Using the VGA Driver with Windows 3.1 12-15

Running the Windows Client Example 12-15
Configuring the Environment Variables 12-17
Starting a P-Code Application. 12-18
Authorizing the Client Computer 12-18
Starting a C-Code Application 12-19
Successful Connection 12-19

12-2 Inf
Security Features. 12-20
Authorizing a Connection 12-20
Connecting Without a Password 12-21

Recording the Computer Name in the /etc/hosts.equiv File . . 12-21
Recording the Computer Name in the .rhosts File. 12-22
The rcp UNIX Command 12-22

Command-Line Features 12-22
Special Tags Features 12-22
ilogin Command-Line Features 12-24

Invisible Terminal Emulation 12-26

Customizing the Login Dialog Box 12-27
Using Ataman Remote Connection Services 12-29

Adding a Scrollbar to the Terminal Emulation Window 12-30

System Colors. 12-31

Customizing the Windows Client Installation 12-31
Customizing Icons, Titles, and Directories. 12-32
Specifying the Windows Client Icons 12-32
Installing Documentation 12-36

Configuration Files 12-37
Configuration File (WTKSRV.INI) Entries 12-37
Splash Screen Configuration 12-43

Client Configuration 12-44
Server Configuration 12-46
Sample Configuration 12-46

User-Defined Configuration File 12-47
User-Definable WTKSRV.INI Entries 12-48

Winframe from CITRIX 12-50
First Method . 12-50
Second Method 12-52
ormix Dynamic 4GL User Guide

In This Chapter
This chapter describes the Windows Client installation and configuration.
The Windows Client allows you to run 4GL programs in graphical mode on
Windows systems.

Windows Client Architecture
The Windows Client (also known as the WTK Client or Windows Front-end)
manages the interface between the client and the server. The Windows Client
integrates two software components:

■ Tcl/Tk interpreter. Tool Command Language (Tcl) and its Toolkit (Tk) are
public-domain scripting languages that provide platform-
independent ways of displaying graphical information and are
particularly suited to GUIs and Internet applications.

■ 4GL Server. The 4GL Server was written in the Tcl language and uses
the public-domain Tk3.6 port WTK from Brückner & Jarosch for
MS-Windows as its interpreter. The 4GL Server runs on the client and
communicates between the GUI and the 4GL commands arriving
from the application server.

When executed, compiled 4GL programs generate commands for the GUI.
The commands are sent to the Windows Client over a TCP-IP network to the
4GL Server, as shown in Figure 12-1.

Figure 12-1
TCP/IP

Communication of
Server Generated
Commands to the

Windows Client

Application Server

4GL
Programs

Windows Client

TCP/IP
Communication

Tcl/Tk
4GL Server
Using the Windows Client 12-3

Windows Client Requirements
The 4GL Server listens for commands. If a graphical command is received, the
command is directed to the Tcl/Tk interpreter where it is converted into
graphical objects. The 4GL Server also handles UNIX remote commands (such
as rcp or rsh).

Important: The 4GL Server usually listens for commands using the socket port
number 6400. This value can be modified if the port is being used by another
application.

Windows Client Requirements
Check to be sure the client system meets the following requirements:

■ A Microsoft TCP/IP stack is installed and correctly configured. You
must use the Microsoft TCP/IP stack. Do not use a third party TCP/IP
stack.

■ You can run 32-bit applications (386 or better).

■ You have disabled any memory manager software (such as
Emm386). Otherwise, the display speed of 4GL applications through
the Windows interface will be reduced.

Windows 3.1 Requirements

For Windows 3.1, you might need to install the WIN32S extension and
Microsoft TCP/IP stack. This software is included with the Dynamic 4GL
media.

For directions on how to install the TCP/IP 32 stack, change to the
\WINDOWS\UTIL\TCPIP32\TCPIP32 directory on the CD and display
readme.txt.

To install the WIN32S extension, start setup.exe in the
\WINDOWS\UTIL\WIN32S\DISK1 directory on the CD.

Monitor Requirements

For best results, use a screen resolution of at least 800 by 600 pixels and be
able to display at least 256 colors. However, you can use the Windows Client
with a standard VGA monitor.
12-4 Informix Dynamic 4GL User Guide

Dynamic 4GL Server Requirements
Dynamic 4GL Server Requirements
To be able to connect to the host computer using the WTK-Rlogin option of
the Windows Client, an Rlogin-Internet service must be running on the
remote computer.

Remote UNIX Computer

The line login/tcp must be in the /etc/services file and a line in the
/etc/inetd.conf file must start with the string login. This service is used with
the rlogin program.

Remote Windows NT Computer

You can use services that allow you to simulate the rlogin feature on a UNIX
computer. However, Microsoft does not provide an rlogin service for
Windows NT. These services are not included with the product and must be
purchased.

Dynamic 4GL provides a demonstration of an rlogin service called Ataman
(see www.ataman.com). You can install and use this service for 15 days
before purchasing the software. For more information on how to install
Ataman, see “Installing and Configuring the Ataman Remote Login Service”
on page 2-22.

Important: You are not restricted to using the Ataman rlogin service. You can install
any rlogin service for Windows NT and use it successfully with the Windows Client.

Installing the Windows Client
The installation process installs both the WTK interpreter and the 4GL Server
that make up the Windows client.

To start the installation

1. Close all applications.

2. Insert the Dynamic 4GL CD.

3. Change to the \CLIENTS\WTK\DISK1\ directory.
Using the Windows Client 12-5

Installing the Windows Client
4. Run setup.exe.

5. Follow the directions that appear.

When prompted, install the 4GL Server. If you have an older version
of the Windows client installed, you are prompted to replace the
older version. If you are doing an update, the same group will be
used and the files rhosts, locals.tcl, and termuser.tcl are not
overwritten.

When prompted, specify the directory where you want to install the
application. By default, the Windows client installs itself in the
\I4glsrv directory on the partition where Windows is installed.

When prompted, enter the name of the program group to store the
new icons. To use a different group name when doing an update, the
previous version must be uninstalled first.

Important: Some software might be incompatible with the Windows client, such as
video drivers, networks drivers, printers, spoolers, memory management programs,
and Ethernet drivers. If an error occurs during the installation, try to install the
Windows client with the minimum of these programs started. You can disable
software in your system autoexec.bat or config.sys files.

After the Installation

After the installation, the following program icons appear in the program
group specified during the installation. The default group name is Informix
4GL Server.

■ The Informix 4GL Server icon, shown in Figure 12-2, starts the 4GL
Server which then runs in the background. This program listens to
4GL commands coming from the application server computer
through the TCP/IP socket. The socket is defined in the Windows
Client configuration file (the default value is 6400).

Figure 12-2
Informix 4GL

Server Icon
12-6 Informix Dynamic 4GL User Guide

Installing the Windows Client
■ The Add WTK 4GL Connection icon, shown in Figure 12-3, creates
new connection icons to remote hosts using the built-in terminal
emulation. For information on creating connection icons, see
“Preconfiguration of Rlogin Connections” on page 12-34.

■ The Informix.Config.Manager icon, shown in Figure 12-4, starts the
Configuration Manager for the local Microsoft Client. For more
information about the Configuration Manager, see Chapter 9, “Using
the Configuration Manager.”

■ The Uninstall Informix 4GL Server icon, shown in Figure 12-5, starts
the uninstallation process of the Windows client.

Figure 12-3
Add WTK 4GL

Connection Icon

Figure 12-4
Informix.Config.

Manager Icon

Figure 12-5
Uninstall Informix

4GL Server Icon
Using the Windows Client 12-7

Installing the Windows Client on a Network
■ The Doc for WTK icon, shown in Figure 12-6, displays the online
documentation. The documentation is a .wri file that can be
displayed with the Windows text editor.

Important: The Dynamic 4GL installation can be changed by editing the configu-
ration files. For instance, you can customize the icons and help files. For more
information on editing the INSTALL.INI configuration file, see Chapter 9, “Using
the Configuration Manager.”

Installing the Windows Client on a Network
The Windows client binaries and data files can be installed from a central
network server. You might want to install from a network server if you have
workstations without hard disks or want to facilitate updating the client.
Network file servers must be running Windows NT, Windows 95, or
Windows 3.11.

For a client workstation installation, execute the application newgrp.exe,
located in the bin subdirectory of the Windows Client.

For example, assume a Windows Client is installed in the f:\fgl2cusr
directory. Computers on the network that want to install a copy of the
Windows Client can mount this directory as a shared drive. They can then
execute newgrp.exe to install the Windows Client program group.

When installing over a network, the uninstall icon is not included. To delete
the Windows Client from a remote computer, you must delete the icons and
the folder manually.

Figure 12-6
Doc for WTK Icon
12-8 Informix Dynamic 4GL User Guide

Starting and Configuring the Windows Client
Starting and Configuring the Windows Client
The following sections describe how to start and configure the Windows
Client.

Starting the 4GL Server
To use the Windows Client, you need to first install and start the 4GL Server.
The server listens for commands in the background.

You can start the 4GL Server in either of the following two ways:

■ With the 4GL Server icon in the program group created during the
installation

A window appears that says that the server is started. You can copy
this icon in the Windows Startup group to execute the 4GL server
immediately at the beginning of each Windows session.

■ With a WTK-Rlogin Telnet connection

Start a new terminal emulation with logging to a remote host; also
start the 4GL Server (if needed).

Creating a Connection
The 4GL Server with TCP/IP uses the Telnet-Internet Service to create a
connection.
Using the Windows Client 12-9

Creating a Connection
To generate an icon for a terminal connection

1. Click the Add WTK Connection icon.

2. When prompted, enter the following information:

❑ Name of the computer. The computer name is the name or the
TCP/IP address of the computer that you want to connect to.

❑ Name of the use. The name of the user is an account name
existing on the remote computer.

❑ Terminal type. The terminal type is the string that will be
exported into the environment variable TERM of the remote
computer after the connection. The xterm is the default.

❑ Optionally, a command-line string. The command string might
contain commands executed by the remote computer after the
logging process.

3. Click OK to create the new connection icon.

To log onto your remote host, click the newly created icon.

The dialog box that appears can be customized with the INSTALL.INI
configuration file. For more information, refer to “Creating Dialog
Boxes” on page 7-12.

Command-Line String Information

With the optional command line added at the creation of a new connection
icon, you can start a 4GL application directly by clicking an icon on the
Windows client computer without need for the user to enter any UNIX
commands.

The following conditions must be met to execute the optional command
string that can be specified at the start of a WTK-Rlogin connection:

■ The connection must be possible without a password, or the
password checking feature must be enabled (see “Connection
Checking” on page 12-11).

■ In the .profile file of the HOME directory of the user on the UNIX side,
there must be no interactive prompting of the user.

■ The list can contain more than one command string, but they must
be separated by the semicolon (;) character.
12-10 Informix Dynamic 4GL User Guide

Connection Checking
You can use the command line to enhance Windows Client login. For
instance, you can automatically start the 4GL Server when initiating a Telnet
connection, process command-line strings on the server after starting the
connection, and customize the connection dialog boxes. These advanced
features will be explained later in this chapter.

Connection Checking
During the connection phase, the 4GL Server analyzes the strings sent back
by the remote UNIX computer, allowing the 4GL Server to know the state of
the current connection. It knows when:

■ you are prompted for the user name. It can also send your user name
for you (if you have specified it).

■ the UNIX server is waiting for the password, so it can let you type it
or send it for you if you are using the ilogin (see below) feature.

■ the authentication process is over; the server can then send the
commands specified during the connection icon creation.

The following example shows a standard display of a terminal that is
performing the authentication process:

fire login: F4glUser
Password:
Last login: Tue May 26 10:58:25 from fire.
Using the Windows Client 12-11

Connection Checking
To analyze these strings, the string should be recorded in the [RLOGIN]
section of WTKSRV.INI file.

If a wrong password is typed in, the UNIX server will deny access and ask for
the login prompt again.

Example

For example, suppose when making a connection to a UNIX host (for
instance, a Linux computer named fire) the following display is sent to the
terminal by the remote server:

fire login: F4glUser
Password:
Last login: Tue May 26 10:58:25 from fire.
Hello F4glUser

In this example a fourth line appears because of an entry added to the
/etc/profile file.

[RLOGIN] Option Description

CHECK_PASSWORD Set this option to 0 (zero) if you do not want to
check for a password. (This is the default setting.)
Set the field to 1 to enable the feature. For more
information, see “User-Definable WTKSRV.INI
Entries” on page 12-48.

LOGIN_QUESTION Specifies the string sent by the UNIX server when
asking for the login, usually login.

PASSWORD_QUESTION Specifies the string sent by the UNIX server when
asking for the password, usually Password

LOGIN_OK When you successfully enter the password, the
UNIX server sends a string such as "Last
login: …" . Set the value to a substring of this one
to tell to the 4GL Server that the authentication
was successful. The next processing, such as
sending the optional command line, can then be
started.

The LOGIN_QUESTION and
PASSWORD_QUESTION strings should not be
the same as for the LOGIN_OK string.
12-12 Informix Dynamic 4GL User Guide

Windows Client Language
Use the following settings for the connection to this computer:

■ For LOGIN_QUESTION, use the string login that appears in the first
line of the connection example. The 4GL Server then knows to
automatically send the user name when the string login is displayed
by the remote host.

■ For the PASSWORD_QUESTION, use the string word displayed at the
second line of the example. The 4GL Server knows to send a
password when the string word is sent by the remote host.

■ For the LOGIN_OK, to use the string Last. Use a string that appears
each time the authentication process is successful. However, be
careful that the strings for PASSWORD_QUESTION and
LOGIN_QUESTION are not the same as the LOGIN_OK string. In this
case, the second word of the third line is the word login. You should
use the first word of this line: Last.

Debugging the Connection

To help you set the strings for the dialog between the UNIX server and the 4GL
Server, you can set the field LOGIN_DEBUG to 1. A debug window displays
the string comparison made between the strings set in the WTKSRV.IN file
and the strings send by the remote UNIX server.

If you have more than one server, the connection strings might change from
one server to another. In this case you will need to create a user-defined
configuration file. For more information, see “User-Defined Configuration
File” on page 12-47.

Windows Client Language
By default, the language of the Windows Client is English. You can change it
to German or French. To do so, you must change the value of the key
language in the section [INTERNATIONAL] of the Windows Client configu-
ration file WTKSRV.INI.

The default value is us for English and can be set to de for German or fr for
French. This feature has nothing to do with either the language of the 4GL
compiler or with the language of the 4GL application.
Using the Windows Client 12-13

Setting the Server Environment Variables
Setting the Server Environment Variables
After you are connected to the server, you need to specify the name or
address of the client computer and the occurrence number of the communi-
cation daemon running on the Windows computer.

To do this, use the FGLSERVER environment variable. The syntax of the
FGLSERVER environment variable is:

machine_ip_address : daemon_number

where the machine_ip_address is set to the TCP/IP address (or name) of the
computer running the Windows Client and daemon_number is set to the
occurrence number of the Windows Client.

The following example shows it in a Bourne shell:

$ FGLSERVER=127.0.0.10:0
$ export FGLSERVER

These two lines tell the compiler that the GUI runs on the computer with the
IP address 127.0.0.10 and uses the occurrence number 0.

In addition, you need to check the value of the FGLGUI environment
variable. If the environment variable is set to 0, the program is executed in
ASCII mode exactly as if compiled with 4GL compilers. If the environment
variable is set to 1, it uses the Window Client and the application appears in
graphical mode.

To check this setting, use the following UNIX command:

$ echo $FGLGUI

The following Bourne shell example shows how to set the environment
variable:

$ FGLGUI=1
$ export FGLGUI
12-14 Informix Dynamic 4GL User Guide

Using the VGA Driver with Windows 3.1
Using the VGA Driver with Windows 3.1
The WTK.INI file is the main configuration file for the Tcl/Tk interpreter. The
WTK.INI file is usually located in the <installdir>\BIN directory. The Tcl/Tk
interpreter can use the standard VGA driver of Microsoft Windows 3.1x. To
configure the driver, set the following variables.

Running the Windows Client Example
This section describes the complete process for:

■ configuring the Windows Client.

■ creating a connection between the Windows computer named earth
and the UNIX server named water.

■ executing the program ex, as shown in “Compiling a Simple
Program” on page 3-4.

This example assumes that you are working on the Windows computer earth
and have finished installing the Windows Client.

Variables Description

VERSION Version of WTK

BLACKFRAMES Set to 1 if you get black borders instead of the
three-dimensional shaded frames. Useful for
16 colors configurations and border.Width set to 1.

DITHER Set to 1 to substitute other colors (if necessary) for your
special colors. This is not recommended because it can
result in blotchy or mottled display for large single-
color areas.
Using the Windows Client 12-15

Creating a Connection
Creating a Connection
To create an rlogin connection between earth and water, use the WTK-Rlogin
emulation.

1. Click the Add WTK 4GL Connection icon.

Figure 12-7 shows the window that is displayed.

2. Enter the following information.

You want the terminal to be visible and the login dialog box to be dis-
played, so leave the connection is visible and the show login-dialog
boxes checked.

Figure 12-7
Connection Window

for WTK 4GL

Text Box Value

Computer water

User Informix

Terminal xterm (This value is automatically set.)

Commandline An optional command line to be executed after the
connection is successful (For this example, leave it
blank.)
12-16 Informix Dynamic 4GL User Guide

Configuring the Environment Variables
3. To validate the information, click OK.

You now have a new icon named Informix@water.

4. To start the connection, double-click the icon and enter your
password when prompted.

The rlogin terminal is now connected to the water server.

Configuring the Environment Variables
If you are connecting a system, you must set the necessary environment
variables, as follows:

1. Execute the shell script envcomp created during the installation
process and located in the directory where you installed Dynamic
4GL:

$. ./envfcomp

2. Set the FGLSERVER environment variable to the address of the client
computer:

$ FGLSERVER=earth:0
$ export FGLSERVER

3. Check the value of the FGLGUI environment variable.

If it is set to 0, the program is executed in ASCII mode exactly as if
compiled with 4GL compilers. If it is set to 1, it uses the Window
Client and the application appears in graphical mode.

4. Check this setting with the following command:
$ echo $FGLGUI

5. If it is set to 0 or if it is not set, set it to 1 with the following
commands:

$ FGLGUI=1
$ export FGLGUI
Using the Windows Client 12-17

Starting a P-Code Application
Starting a P-Code Application
Now that the environment variable is correctly set, start the application.

1. Change to the directory where the program is compiled.

If you have compiled it to P code, the following files are in the
directory.

2. Type the name of your runner and, as the first parameter, the name
of the file resulting from the link between all the 4GL modules.

The runner can be fglnodb because in this program, you do not use
any calls to the Informix database interface:

$ fglnodb ex1.42r

Authorizing the Client Computer
Immediately after you have started the 4GL program, you will be prompted
on the Windows Client asking if you want to authorize the connection. This
message appears the first time a computer connects to the communication
daemon running on the Client computer.

In this case, it means user Informix on the computer water is trying to access
earth.

Type of File Filename

The source files ex1-1.4gl, ex1-2.4gl, ex1-1.per

The compiled form ex1-1.42f

The P-code modules ex1-1.42m, ex1-2.42m

The P-code link ex1.42r
12-18 Informix Dynamic 4GL User Guide

Starting a C-Code Application
Select one of the following dialog box options. You have five seconds to
respond to the prompt or the Client automatically responds no.

■ Yes: allows user Informix on the computer water to have access to
the local computer for all future connections. The user name and the
computer name are recorded in the \windows\rhosts file.

■ Only once: allows user Informix on the computer water to have
access only this time.

■ No: denies user Informix on the computer water access to the local
computer.

For more information on security features, see “Security Features” on
page 12-20.

Starting a C-Code Application
If you have compiled the program to C code, you should have the following
files.

In this case, you simply run the C-code executable:

$ ex1.42e

Successful Connection
After a successful connection without a password, the /etc/profile file and the
.profile file located in the HOME directory of the user are executed and the
TERM environment variable is set as specified by the login icon (by default,
it is set to xterm).

Type of File Filename

The source files ex1-1.4gl, ex1-2.4gl, ex1-1.per

The compiled form ex1-1.42f

The C code executable ex1.42e
Using the Windows Client 12-19

Security Features
In either case, you get the same display on the computer fire. Choose the
Message box menu item and then select one of the four icons, enter a title and
a message, and then a message box will be displayed, as shown in
Figure 12-8.

Security Features
Because the 4GL Server can read, write files, and execute programs using
Tcl/Tk commands, the server needs to check the identity of the remote
computer sending commands using the TCP port.

Authorizing a Connection
On the Windows computer running the 4GL Server, the rhosts file in the
Windows directory lists the user/computers allowed to communicate with
the 4GL server. By default, only the localhost (the Windows computer
running the 4GL Server) is listed.

Figure 12-8
Displaying a

Message Box
12-20 Informix Dynamic 4GL User Guide

Connecting Without a Password
When a non-authorized connection to the 4GL Server occurs, a message box
appears on the Windows computer and you can decide to:

■ authorize the access (a new line is added to the rhosts file).

■ authorize the access only this time.

■ deny access.

To remove the access right for a previously authorized user, you must edit the
rhosts file and remove the line specifying the user.

Connecting Without a Password
To start a connection to a computer without having to enter a password,
perform the following steps:

1. Set CHECK_PASSWORD=0 in the [RLOGIN] section of the
WTKSRV.INI file.

For more information, see “User-Definable WTKSRV.INI Entries” on
page 12-48.

2. Update either the host.equiv file or rhosts file.

For more information, refer to the following sections.

Warning: Setting up a password free connection creates a trusted relationship to the
remote client. Anyone using the remote client can login into the server. A password
free login occurs with any user name except for root.

Recording the Computer Name in the /etc/hosts.equiv File

Record the name of the Windows computer in the /etc/hosts.equiv file of the
UNIX computer. Record the computer name twice: once with the short
computer name and again with the domain name added. You must record
the name twice because one name will not be accepted, depending on
whether a domain name server is used or not.

If you are connecting to a Windows NT computer, the /etc/hosts.equiv file is
located in \Winnt\System32\Drivers\etc\hosts.equiv.
Using the Windows Client 12-21

Command-Line Features
Recording the Computer Name in the .rhosts File

Record the name of the Windows computer in the .rhosts file of the HOME
directory of the user on the UNIX computer. The .rhosts file must have 0600
(octal) level access rights assigned so that only the owner can read and write
the file.

Using this method, an identification per UNIX user name is possible. If the
Windows computer is not recorded in any of the described files, a password
will be asked.

The rcp UNIX Command

The 4GL Server contains a Remote shell daemon that allows remote copy
(rcp) between UNIX and MS Windows computers. The authentication works
as with the 4GL Server with entries in the rhosts file in the Windows directory.

Command-Line Features
The following features can be added to the command line during a
connection.

Special Tags Features
The following special tags can be used in the command line of the connection
icons.

Tags Description

@FGLNT set FGLSERVER=<IP Address>&&set FGLGUI=1

@FGLCSH setenv FGLSERVER="<IP Address>:<port>"setenv FGLGUI=1

@FGLKSH FGLSERVER="<IP Address>:<port>";export
FGLSERVER:FGLGUI=1exportFGLGUI

 (1 of 2)
12-22 Informix Dynamic 4GL User Guide

Special Tags Features
Important: Use the @FGL tag for backward compatibility only. For forward compat-
ibility, use the @FGLKSH tag instead.

@FGL Replaces the "export"
FGLSERVER=<ip_number>:<server_number> command with
the IP number automatically set to the IP address of the client
computer. You do not need any script on the UNIX server side to
get the IP address of the client.

@SRVNUM Wtk server port increment number (The second part of
FGLSERVER).

@PORT WTk server base communication port number

@USR Client current user name

@IP Replaces the IP address of the client computer. This value can be
used if, for example, you are using a UNIX C Shell and you cannot
use the "@FGL" tag to set the FGLSERVER value.

@COMPUTER Machine host name

E_LINES export LINES=<Number of lines in terminal emulation window>

E_SRV export FGLSERVER

LINES Number of lines in terminal emulation window

4GLSRVER Wtk server version

Tags Description

 (2 of 2)
Using the Windows Client 12-23

ilogin Command-Line Features
ilogin Command-Line Features
The ilogin feature allows you to customize the terminal emulation login
before you start a 4GL program. To enable this functionality, change the
command line in the following way:

1. Change the login keyword to ilogin, if necessary.

2. Add a flag before the user name, the computer name, the terminal
type name, and the command line.

If a field flag is not defined on the command line, the corresponding
field is left blank in the dialog box.

The following example shows the command line of a connection
icon:

c:\fgl2cusr\startwtk ilogin -co myserver -cmd {
@FGL;ia.sh;exit}

This command line creates a dialog box where the user enters just
their user name and password.

Available flags are listed in the following table and can be abbreviated.

Flag Value Minimum Abbreviation

-computer I address or I name -co

-user user name -us

-termites terminal type -term

-candling command line -cant

-withdrawn no values, make terminal
invisible

-w

-visible like -withdrawn but with value:

0 means invisible

1 means visible

-is

-all no value, show all fields in the
dialog box, and a history list box
of the previous connections

-al

 (1 of 3)
12-24 Informix Dynamic 4GL User Guide

ilogin Command-Line Features
-interactive says whether the ilogin box
appears (default value=1) or the
connection is immediately made
without box (0)

-i

-title specifies the text in the caption of
the ilogin box

-tit

-scrabbler specifies whether the emulation
has a scrollbar(1) or not
(0-default)

-scroll

-historians specifies the number of lines in
the scroll back buffer of the
terminal; the buffer is created
regardless of the value of
scrabbler

-his

-Icon argument must be a valid
Windows .ico-File, the given
Path is relative to the working
directory of the 4GL Server.
Example: Working dir is
c:\Fgl2cusr, -Ico
icons\conn1.ico, the icon must
must be in C:\Fgl2cusr\icons.
You can also give absolute paths
for the icon file name

-Ico

-height specifies the height of the
terminal window in characters
(default 25)

-hei

Flag Value Minimum Abbreviation

 (2 of 3)
Using the Windows Client 12-25

ilogin Command-Line Features
Invisible Terminal Emulation

You might want the WTK-Rlogin Terminal emulation window to disappear
and appear only when required by the 4GL application (call to system
functions by example) and to be lowered afterward.

To do so, edit the properties of a created icon and then add to the command
line the flag -w.

As an example, if you have:

D:\usr\FGL2CUSR\BIN\STARTWTK.EXE ilogin -computer zeus -user lic -
term xterm -cmd "export LINES=25"

change it to:

D:\usr\FGL2CUSR\BIN\STARTWTK.EXE ilogin -w -computer zeus -user
lic -term xterm -cmd "export LINES=25"

or:

D:\usr\FGL2CUSR\BIN\STARTWTK.EXE ilogin -visible 0 -computer zeus
-user lic -term xterm -cmd "export LINES=25"

If you want to make the Terminal emulation window appear, you just have
to click Show Wtk-Rlogin-Connections. Select the Terminal in the list you
want to be displayed and then click switch to.

-width specifies the width of the
terminal window in characters
(default 80)

-wid

-autoscale specifies whether the terminal
window is scalable(1) or not(0)

-wid

-file specifies a file where you can
group common settings of a
connection. With the switches in
the ilogin command line, you can
override the settings in this file.
For more information, see “User-
Defined Configuration File” on
page 12-47.

-f

Flag Value Minimum Abbreviation

 (3 of 3)
12-26 Informix Dynamic 4GL User Guide

Customizing the Login Dialog Box
Important: During the execution of a 4GL application, using the fgl_system
statement instead of run raises the invisible WTK terminal emulation then hides it
after the execution of the specified command. You have to check if the “rp” and the
“hp” entries are correctly set in the UNIX termcap definition file. For more infor-
mation about the fgl_system 4GL function, see the INFORMIX-4GL Reference
Manual.

Customizing the Login Dialog Box
You might want to hide some of the fields of the login dialog box. To do so,
add the following key to the [RLOGIN] section of the WTKSRV.INI file.

[RLOGIN] Key Description

SHOW_COMPUTER If set to 1, shows the computer frame inside the login
dialog

SHOW_USER If set to 1, shows the user frame inside the login dialog

SHOW_TERMTYPE If set to 1, shows the terminal type frame inside the login
dialog

SHOW_CMDLINE If set to 1, shows the command-line frame in the login
dialog

A few other keys can change the behavior of the login process:

 (1 of 2)
Using the Windows Client 12-27

Customizing the Login Dialog Box
In addition to the CU_COMPSTR, CU_USERSTR, CU_COMPUTER, and
CU_USER variables, which are also used by the Computer-User dialog, the
Add-Rlogin program also uses the following variables that start with CU_:

The name of the icon can also be influenced when creating an Rlogin icon.
There is a difference between connection with or without optional command
string. For connections with the command string, the entry
ADDED_TITLECMD must be used. For connections without the command
string, it is ADDED_TITLE. In both entries again, %cand %ucan be used as an
alias for the chosen computer and user names.

SHOW_PROGRESS. If the window waiting for a connection is confusing, set to
0.

KEEP_PASSWORD If the password should be kept for the next application,
set to 1. This only works if password checking is on and
the server side asks for it.

Keeping a password is dangerous; try to find the global
variable for the kept password in remote2.tcl and if you
know it, you can spy the password from the UNIX side
with a simple fglUiRetrieve. It is more secure to turn it off,
but for Windows NT as a server (with the Ataman remote
login services), it is the only way to avoid being prompted
for a password for each connection.

CANCEL_CONNECT If set to 1, which is the default, allows cancelling a
connection trial by clicking the CANCEL button of the
Wtk-connect box as soon as the wait icon has
disappeared. Should be set to 0 if problems occur
when using non-standard TCP/IP stacks.

CU_ADDTITLE Title of the Add-Rlogin dialogs

CU_TERMSTR Label of Terminal string

CU_DEFTERM Default value of Terminal entry field

CU_CMDSTR Label of optional command line

CU_DEFCMD Default value of command entry field

[RLOGIN] Key Description

 (2 of 2)
12-28 Informix Dynamic 4GL User Guide

Using Ataman Remote Connection Services
Example:

ADDED_TITLE=Login on %c, User %u
ADDED_TITLECMD=Command on %c, User %u

All variables for the Add-Rlogin program are copied in section [INSTALL] of
the WTKSRV.INI file during installation as well as variables used in precon-
figuration of rlogin.

If some variables are not set, the default settings from the standard instal-
lation are used. (To avoid unwanted settings, erase unused entries from the
sample install.ini file or comment them out with a semicolon in the first
position of the line.)

Using Ataman Remote Connection Services
Ataman allows you to create an rlogin connection between a client computer
running the Windows Client and a Windows NT computer running the
remote connection services.

If you are using Ataman, command syntax is the same as that used on a UNIX
system except when you specify a command-line string to be executed after
the connection. For this, you need to add the \x0d\x0a string or the
command will not be executed before you hit the Return key after the
connection.

The following example shows a connection icon command line starting a 4GL
application after the connection to a Windows NT computer:

c:\fgl2cusr\startwtk ilogin -co myserver -cmd {
c:\\usr\\fgl2c\\env.bat & set FGLSERVER=@IP:0 & cd %FGLDIR%\\demo
& fglrun72 ia & exit\x0d\x0a }

On Windows NT, the command separator is & and not ; (as it is on UNIX).
Using the Windows Client 12-29

Adding a Scrollbar to the Terminal Emulation Window
Adding a Scrollbar to the Terminal Emulation
Window
You can store the lines that scroll out from the Windows terminal into a
buffer. You can then scroll backward through these lines. The following table
shows the keys to use.

It is possible to add a scrollbar on the right side of the terminal to scroll
through the line buffer. To enable this feature, use the following keys.

Keys Description

<Shift-Up> scrolls one line up

<Shift-Down> scrolls one line down

<Shift-Prior> scrolls one page up

<Shift-Next> scrolls one page down

USESCROLLBAR If set to 1, a scrollbar on the right side of the terminal
emulation allows the user to scroll backward the display
of the terminal to see the history lines. If set to 0 (default
value), no scrollbar is displayed.

HISTORYLINES Must be set to the maximum number of lines kept in the
history-lines buffer. The default value is 100 .
12-30 Informix Dynamic 4GL User Guide

System Colors
System Colors
With color management, you can use the current Windows colors settings
with a 4GL application. The system color is updated each time you change the
color on the system. You do not need to restart the 4GL application or
Windows Client.

If the System Color Management feature is enabled, you can still use a
predefined color. To do this, use the Configuration Manager to edit the
locals.tcl file that is installed with your Windows Client software. For more
information, see Chapter 9, “Using the Configuration Manager.”

Important: Several attributes (such as reverse and blink) are not associated with a
special color on Windows. Such attributes exist only on UNIX in Text mode and for
specific terminal configurations. A special color has been associated with each of these
features by default.

Customizing the Windows Client Installation
The install.ini file is the main configuration file for creating a customized
installation. You can customize the installation in the following manner:

■ Substitute different icons to be displayed.

■ Rlogin configuration can be configured in advance.

■ Standard components can be omitted.

The install.ini configuration file contains several sections in which diverse
options and files can be specified. As in other Windows .ini files, the format
of the entries is variable=value with only one entry per line.

Important: After a standard installation of the Windows Client, check the sample
subdirectory for an example of the install.ini file using all the described possibilities.
Using the Windows Client 12-31

Customizing Icons, Titles, and Directories
Customizing Icons, Titles, and Directories
You can customize the installation icons, titles of dialogs, and directory
locations for installing the Windows Client. The following tables lists the
different keys that can be set in the install.ini configuration file.

Specifying the Windows Client Icons
You can specify the icon to be added for the three standard components of the
Windows Client: the 4GL Server, Add-Rlogin, and the Configuration
Manager.

Section Description

[INTROS] Specifies the bitmap and background color at the start of the
installation

BACKGROUND Set to 0 to remove the blue 4GL Server background

FOREGROUND Set to 0 to remove bitmaps. The installation tool (WISE for
Windows) does not allow the use of user defined bitmaps.

[TITLE] Sets your own product name, which will appear in different
dialog boxes during the installation

TITLELONG The long name of the product

TITLESHORT The short name of the product

[DIRECTORIES] Allows you to change the default installation directory and
the default program group name

_4GLDEFROOT Sets the default installation directory name

_4GLDEFGROUP Sets the default program group name
12-32 Informix Dynamic 4GL User Guide

Specifying the Windows Client Icons
You can also specify which icon should be used and which name should be
given to the icon. You must concatenate the Install section prefix and suffix
to create the key.

Example of Install Section

For instance, suppose an Add-Rlogin program has to be installed with the
name new connection and the icon new.ico. You could modify the install.ini
configuration file in the following manner:

[INSTALL]
…
ADDINSTALL=1
ADDTITLE=new connection
ADDICON=icons\new.ico

If the installation directory is A:\, the new.ico file should be located in the
A:\icons directory. However, if during the installation the C:\account
directory is chosen as the installation directory with icon group ACCOUNT,
then an icon new connection would be installed in group ACCOUNT with the
following path and icon name: C:\ACCOUNT\icons\new.ico.

As shown in the previous example, a path can be specified for the icon. This
path is relative to the installation directory.

Prefix/Suffix Key Description

Prefixes SERVER ... The 4GL Server

ADD ... The Add-Rlogin

CMD ... The Configuration Manager

Suffixes ... INSTALL Install an icon for the prefixed
component

... TITLE Icon name for the prefixed
component

... ICON Icon file for the prefixed component
Using the Windows Client 12-33

Specifying the Windows Client Icons
Preconfiguration of Rlogin Connections

Rlogin connections can be configured in advance in the [INSTALL] section of
the INSTALL.INI file. To do this, you must know the IP address of the 4GL
application server and the programs that have to be started on the server.

Each connection is described using three keys. The three keys are suffixed by
the number of the connection icon to create, starting with the number 0, and
are prefixed by the following keys:

Example:

[INSTALL]
…
;2 connections
NUMCONNS=2
;first connection
CONN0=ilogin -w -co myServer -cmd { @FGL;sh holiday.sh;exit}
CONNTITLE0=Holiday application
ICONN0=icons\holi.ico
;second connection
CONN1=ilogin -w -co myServer -cmd { @FGL;sh Accounting.sh;exit}
CONNTITLE1=Accounting
ICONN1=icons\account.ico

In some cases the server name or the user name to use might not be known
when configuring the installation. The optional Computer-User-Dialog can
then be used.

NUMCONNS Specifies the number of Rlogin connection icons to create
during the installation of the Windows Client.

CONN The command line for this connection icon

CONNTITLE The icon name for this connection icon

ICONN The icon file to use for this connection icon
12-34 Informix Dynamic 4GL User Guide

Specifying the Windows Client Icons
If in the INSTALL.INI file under the [INSTALL] section, the key CU_DIALOG
is set to 1, this dialog box will appear before the installation of the icons. In
the description of the connection, the alias %c (for Computer) %u (or User)
can be used. The dialog box can be configured with the following keys:

Example:

;show Computer-User dialog
CU_DIALOG=1
;Title of dialog
CU_TITLE=Enter a computer and a user
;label for the computer
CU_COMPSTR=Database server
;label for User
CU_USERSTR=User:
;default value for computer entry field
CU_COMPUTER=Enter IP-Adress of server
;default value for user entry field
CU_USER=Enter user
;1 conection
NUMCONNS=1
;in the comand line %c and %u will be replaced with the values of
the Computer-User dialog
CONN0=login -w %c %u vt100 "account;exit"
CONNTITLE0=Accounting on %c, User %u
ICONN0=icons\accoun.ico
;If in dialog computer name "server1" and user name "bob" have
been specified, the icon title will be "Accounting on server1,
User bob"

CU_TITLE The title of the dialog box

CU_COMPSTR The string display before the field where the user
should enter a computer IP address or name.

CU_USERSTR The string displayed before the field where the user
should enter a user name.
Using the Windows Client 12-35

Installing Documentation
Installing Documentation
You can install documentation, including icons that navigate to documen-
tation. For example, you might include the files and icons for WinWrite files,
text files, or WinHelp files. The NUMEXES key determines the number of
icons to be installed for the documentation. An icon is determined by the
following three prefixes:

The suffix is the order number (starting with 0).

Example:

NUMEXES=1
;1 document has to be installed
EXE0=write
EXECMDLINE0=doc\account.wri
;not using an icon results in the use of the standard Windows
Write icon
EXEICON0=

Installation of Extra Files
You can install extra files without adding icons into the program folder. To do
this, you must set the NUMFILES entry to the number of files to be installed
from the installation media. Then you must set the FILE(x) key, with (x) being
a unique number starting at 0, to the file name to be copied.

Example:

NUMFILES=2
;2 files have to be installed
FILE0=bin\appl.ico
; the file bin\appl.ico have to be copied from the installation
; media into the "bin" directory of the Windows Front end
FILE1=README.1st
; the file have to be copied from the install media to the
; Windows Front-end installation media

EXE Windows executable for the document

EXECMDLINE File name of document (relative to installation medium)

EXEICON Icon file for this document
12-36 Informix Dynamic 4GL User Guide

Configuration Files
Configuration Files
Because of the many options for the 4GL Server and the WTK-Rlogin terminal,
a three-stage option hierarchy exists. When you set the same entry in
different stages, the value is set from the last parsed configuration stage. The
parse order of the three stages follows:

■ There are entries in WTKSRV.INI file (global settings).

■ There are entries in a user-defined file for grouping options,
overriding entries from WTKSRV.INI.

■ There are command-line entries for the ilogin-Box and inew-Box,
overriding the settings from WTKSRV.INI and user-defined files.

Configuration File (WTKSRV.INI) Entries
The file WTKSRV.INI is the main configuration file for the 4GL Server.
Typically, this file only needs to be edited to change the port number, to
switch off the R shell daemon, and to configure the [RLOGIN] section. The file
is located in the installation directory of the 4GL Server, usually
C:\FGL2CUSR.

Important: Before Version 1.23, the configuration file for the 4GL Server was called
WTKSRV.INI.

The following table lists the most important file entries. If some entries do not
appear in your file, the default values are used.

[Section]/Values Description

[DIRECTORIES]

WTK_ROOTDIR Installation directory of WTK-Interpreter

WTK_EXE WTK-Interpreter

WTK_CLIENTDIR Directory of Tcl_Scripts for 4GL Server on the
client

WTK_4GLSERVER_DIR Same as WTK_CLIENTDIR

 (1 of 7)
Using the Windows Client 12-37

Configuration File (WTKSRV.INI) Entries
WTK_4GLSERVER_WORKDIR Working directory of 4GL Server

WTK_4GLSERVER_ROOTDIR Installation directory of 4GL Server

WTK_4GLSERVER_GROUP Program Group name of 4GL Server

[VERSION] section

WTK_VERSION Version number of used WTK-Interpreter

WTK_4GLSERVER_VERSION Version number of server

[4GLSERVER]

WTK_4GLSERVERPORT Sets the port number of server (default=6400)

HIDE Hides the 4GL Server during startup of
Terminal and pressing Escape in the server
window (default=1), to let the server
minimized set to 0

ICON Runtime Icon name for the server window
(default=4glsrv.ico)

SHOW_SERVER_START Set to 1 to display a progress box for two
seconds telling the user the server started
(default=1). Set to 0 (zero) to prevent the
progress box from appearing.

MSG_STARTSUCCESS Text for reporting to the user the successful
start of the server

MSG_STARTFAILED Text for reporting to the user the failure of the
server-start

TITLE_SERVER Text for the caption of the server

TITLE_CONNECTIONS Text for the caption of the 4GL connections
dialog box

[TCLVARIABLES]

[Section]/Values Description

 (2 of 7)
12-38 Informix Dynamic 4GL User Guide

Configuration File (WTKSRV.INI) Entries
WTK_USEPEERNAME Winsock-ability (default= 1). When the
application server tries to open a connection
on the client machine (default port=6400) to
display the 4GL application, the client first
executes an authentication of the server. If
WTK_USEPEERNAME is set to 1, the client
tries to resolve the application server name
from its numerical IP address. If authenti-
cation fails, the WTK_USEPEERNAME entry
is set to 0, and the numerical IP address is
recorded in the rhost file of the client
machine instead of the application server
name.

WTK_USEHOSTNAME Winsock-ability (default= 1). If the 4GL
Server fails to resolve the name of the
computer on which it is running, The server
sets the value of WTK_USEHOSTNAME to 0
and uses the numerical IP address instead of
the 4GL Server name.

[INSTALL]

ADDINSTALL Add-Rlogin installed (default=1)

ADDTITLE IconName Add-Rlogin

ADDICON IconFile Add-Rlogin

SERVERINSTALL Server-Icon installed(1)

SERVERTITLE IconName Server

SERVERICON IconFile Server

CFGINSTALL 4JS-Configuration Manager installed(1)

CFGTITLE IconName Manager

CFGICON IconFile Manager

CU_TITLE Title for Computer-User-Dialog

CU_COMPSTR Computer label

[Section]/Values Description

 (3 of 7)
Using the Windows Client 12-39

Configuration File (WTKSRV.INI) Entries
CU_USERSTR User label

CU_COMPUTER Default value Computer entry

CU_USER Default value User entry

CU_ADDTITLE Title for Add-Rlogin-Dialog

CU_CMDSTR Optional commands label

CU_DEFCMD Default value command entry

CU_TERMSTR Terminal label

CU_DEFTERM Default value Terminal entry

ADDED_TITLE Icon-Name of a created Rlogin-Session

DDED_TITLECMD Icon-Name of a created Rlogin-Session with
commands

[RSHD]

ON 1 or 0 activates or deactivates RSHELL-
Daemon(1)

[INTERNATIONAL]

LANGUAGE Two characters abbreviation of country (us,
de, fr) default: us

[RLOGIN]

sendwinsize Default 1, if 1 sending of RFC-conform
changes special sequences for Window-size
(does not work with SCO-Systems)

LOGIN_COMMAND_WAIT To set up a delay in milliseconds before
sending the command line to the UNIX
server. Can be used for fast client
workstations.

LOGIN_DEBUG If set to 1, a debug window will be displayed
to check the dialog between the 4GL Server
and the UNIX server

[Section]/Values Description

 (4 of 7)
12-40 Informix Dynamic 4GL User Guide

Configuration File (WTKSRV.INI) Entries
LOGIN_QUESTION To set up the login string sent by the UNIX
server and which will be displayed in the
authentication dialog box if
CHECK_PASSWORD is enabled and the first
password supplied failed

LOGIN_OK To set up the string sent by the UNIX server
once the authentication is successful

CHECK_PASSWORD If set to 1, the password authentication
process with the UNIX server will be enabled

PASSWORD_QUESTION To set up the password string sent by the
UNIX server and which will be displayed in
the authentication dialog box if
CHECK_PASSWORD is enabled

SHOW_COMPUTER If set to 1, shows the computer frame inside
the login dialog

SHOW_USER If set to 1, shows the user frame inside the
login dialog

SHOW_TERMTYPE If set to 1, shows the terminal type frame
inside the login dialog

SHOW_CMDLINE If set to 1, shows the command-line frame in
the login dialog

KEEP_PASSWORD If the password should be kept for the next
application, set to 1. This only works if
password checking is on and the server side
asks for it.

Keeping a password is dangerous; try to find
the global variable for the kept password in
remote2.tcl and if you know it, you can spy
the password from the UNIX side with a
simple fglUiRetrieve. It is more secure to
turn it off, but for Windows NT as a server
(with the Ataman remote login services), it is
the only way to avoid being prompted for a
password for each connection.

[Section]/Values Description

 (5 of 7)
Using the Windows Client 12-41

Configuration File (WTKSRV.INI) Entries
SHOW_PROGRESS. If the window waiting for a connection is
confusing, set to 0

CANCEL_CONNECT If set to 1, which is the default, allows to
cancel a connection trial by clicking on the
CANCEL button of the Wtk-connect box as
soon as the egg timer has disappeared.
Should be set to 0 if trouble occurs when
using nonstandard TCP/IP stacks.

USESCROLLBAR If set to 1, a scrollbar on the right side of the
terminal emulation allow the user to scroll
backward the display of the terminal to see
the history lines. If set to 0 (default value), no
scrollbar is displayed.

HISTORYLINES Must be set to the maximum number of lines
keep in the history lines buffer. The default
value is 100 .

ILOGIN_INTERACTIVE Tells the ilogin dialog if it should run with a
box(default:1) or immediately(0)

ILOGIN_TITLE Title in the caption of the ilogin-dialog

ILOGIN_TITLE_FAILED Title of the ilogin-box if the login fails

ILOGIN_TITLE_PASSWORD Title of the ilogin-box when expecting a
password

ILOGIN_TITLE_CREATEICON Title of the inew-box when creating an icon

ILOGIN_ENTRYWIDTH Width of the entries in the ilogin-dialog (in
characters)

ILOGIN_TXT_COMPUTER Label text for the computer (replaces the
former CU_COMPSTR in [INSTALL])

ILOGIN_TXT_USER Label text for the user (replaces the former
CU_USERSTR in [INSTALL])

ILOGIN_TXT_TERMTYPE Label text for the user (replaces the former
CU_TERMSTR in [INSTALL])

[Section]/Values Description

 (6 of 7)
12-42 Informix Dynamic 4GL User Guide

Splash Screen Configuration
Splash Screen Configuration
You can create or modify a splash screen. You can configure the splash screen
on the client and server.

Important: You must install Version 3.0 of the Windows Client to use the splash
screen feature.

ILOGIN_TXT_CMDLINE Label text for the user (replaces the former
CU_CMDSTR in [INSTALL])

COMPUTER Default in the computer entry (replaces the
former CU_COMPUTER in [INSTALL])

USER Default in the user entry (replaces the former
CU_USER in [INSTALL])

TERMINAL Default in the terminal entry (replaces the
former CU_DEFTERM in [INSTALL])

OPTCOMMAND Default in the command-line entry (replaces
the former CU_DEFCMD in [INSTALL])

ILOGIN_TXT_PASSWORD Label text for the password

ILOGIN_TXT_VISIBLE Label text for the visible box

ILOGIN_TXT_INTERACTIVE Label text for the interactive box

[Section]/Values Description

 (7 of 7)
Using the Windows Client 12-43

Splash Screen Configuration
Client Configuration

To configure the client, change the values in the Wtksrv.ini file. A new
[SPLASH] resource has been added to the file. The following table lists the
basic configuration resources.

[Section]/Values Description

[SPLASH]

SPLASH_VISIBLE Disable or enable a splash screen:

0: No splash screen appears

1: A splash appears. The default is 1.

SPLASH_BACKGROUND Specifies the background color for the splash
frame. A color name or color hex value can
be used. The default value is the current
system background color.

SPLASH_FOREGROUND Specifies the foreground color for the splash
frame. A color name or color hex value can
be used. The default value is the current
system background color.

SPLASH_DURATION Specifies the duration of the splash screen
display in seconds. The default value is 1.

SPLASH_LAYOUT Select from four different splash screen
layouts:

1: Display bitmap and text on the left side

2: Display bitmap and text on the right side

3: Display bitmap and text on top

4: Display bitmap and text on bottom

The default value is 0.
12-44 Informix Dynamic 4GL User Guide

Splash Screen Configuration
The following table lists the different bitmap splash screen configurations.

The following table lists the different text splash configurations.

[Section]/Values Description

[SPLASH]

 SPLASH_BITMAP_USE Specifies if a bitmap appears in the splash
screen.

1: Splash bitmap enable.

0: Splash bitmap disable.

The default value is 1.

 SPLASH_BITMAP_FILE Specifies the path to the bitmap file. The
path you should use '/' or '\\' as directory
separators. For example,
SPLASH_BITMAP_FILE="C:\\WINNT\
\256.bmp"

SPLASH_BITMAP_COLOR_FILTER Applies a color filter to colorize the bitmap
file. The color can be the name or the hex
value. The default value is #fffff.

[Section]/Values Description

[SPLASH]

SPLASH_TEXT_STRING Specifies the display text. The default value is
blank.

SPLASH_TEXT_FONT_NAME Specifies the font name to use for the display
text. The default value is Arial.

SPLASH_TEXT_FONT_STYLE Specifies the font style to use. For example,
you can use bold, normal, or italic. The
default value is normal.

 (1 of 2)
Using the Windows Client 12-45

Splash Screen Configuration
Server Configuration

To configure the server, you can edit values in the fglprofile file. The values
will appear in the following format:

splash.<Application name>.<type>

The following example shows the same value in the wtkserv.ini and
fglprofile files:

Sample Configuration

The following example shows a configuration file for the client (with a fast
cpu speed) and server. The configuration file on the client specifies infor-
mation about the splash screen; the one on the server species the content.

Important: The SPLASH_BITMAP_USE resource is only available on the client side.

SPLASH_TEXT_FONT_SIZE Specifies the font size. The default size is 12
points.

SPLASH_TEXT_FOREGROUND Specifies the foreground color text. A color
name or color hex value can be used. The
default value is the current system
background color.

SPLASH_TEXT_BACKGROUND Specifies the background color text. A color
name or color hex value can be used. The
default value is the current system
background color.

wtksrv.ini SPLASH_BITMAP_FILE=e:/bmpfiles/ia.bmp

fglprofile splash.ia.bitmap.file="e:/bmpfiles/ia.bmp"

[SPLASH]
SPLASH_VISIBLE=1
SPLASH_BITMAP_USE=1
SPLASH_BACKGROUND="red"
SPLASH_FOREGROUND="black"
SPLASH_DURATION=5
SPLASH_LAYOUT=2

splash.ia.bitmap.file="e:/bmpfiles/ia.bmp"
 splash.ia.bitmap.color.filter="white"
 splash.ia.text.string="Informix Tools"
 splash.ia.text.font.name="Courier"
 splash.ia.text.size="12"
 splash.ia.text.foreground="black"
 splash.ia.text.background="red"

[Section]/Values Description

 (2 of 2)
12-46 Informix Dynamic 4GL User Guide

User-Defined Configuration File
User-Defined Configuration File
You can create a small Tcl/Tk script file to set the variables that correspond to
the keys of the WTKSRV.INI file. You add a -f flag to the command line of the
connection icon followed by your user-defined filename.

The following example shows a modified command line:

<windows front end>\BIN\STARTWTK.EXE ilogin -comp {water} -us
{4js} -cmdline {@FGL} -f c:/user/4js/wtk.cnf

The path is given with / character and not \.

The next step is to write the c:\user\4js\wtk.cnf user-defined configuration
file. Of course you can choose the name you want for these configuration
files. This file is a simple Tcl/Tk script setting the Tcl/Tk variables listed in
Appendix A.

The Tcl/Tk syntax for setting variables is as follows:

■ One command per line

■ The name of the variables are case sensitive

■ The syntax is: set <variable name> <value>

■ If the <value> is a string of more than one word, enclose the string
between double quotes

The following example shows a Tcl/Tk script:

set termtype xterm
set user 4js
set cmdline "@FGL;cd /usr/4js/;fglrun apps;exit"
set login_ok "Successful"
Using the Windows Client 12-47

User-Definable WTKSRV.INI Entries
User-Definable WTKSRV.INI Entries
Entries for user-defined configuration files and command-line options are
shown in the following table.

WTKSRV.INI Entries
User-Defined Configuration
Files

Command-Line
Options

[RLOGIN] section

sendwinsize sendwinsize sendwinsize

LOGIN_COMMAND_WAIT login_command_wait noentry

LOGIN_DEBUG noentry noentry

LOGIN_QUESTION login_question noentry

LOGIN_OK login_ok noentry

CHECK_PASSWORD check_password noentry

PASSWORD_QUESTION password_question noentry

SHOW_COMPUTER show_computer noentry

SHOW_USER show_user noentry

SHOW_TERMTYPE show_termtype noentry

SHOW_CMDLINE show_cmdline noentry

SHOW_VISIBLE show_visible noentry

SHOW_INTERACTIVE show_visible noentry

KEEP_PASSWORD noentry noentry

SHOW_PROGRESS. show_progress noentry

CANCEL_CONNECT noentry noentry

COMPUTER computer computer

USER user user

TERMINAL termtype termtype

 (1 of 2)
12-48 Informix Dynamic 4GL User Guide

User-Definable WTKSRV.INI Entries
OPTCOMMAND cmdline cmdline

VISIBLE visible visible

USESCROLLBAR usescrollbar scrollbar

HISTORYLINES historylines historylines

WIDTH width width

HEIGHT height height

AUTOSCALE autoscale autoscale

ICON icon Icon

ILOGIN_INTERACTIVE interactive interactive

ILOGIN_TITLE ilogin_title title

ILOGIN_ENTRYWIDTH entrywidth noentry

ILOGIN_TITLE_FAILED ilogin_title_failed noentry

ILOGIN_TITLE_FAILED ilogin_title_failed noentry

ILOGIN_TXT_USER txt_user noentry

ILOGIN_TXT_PASSWORD txt_password noentry

ILOGIN_TXT_CMDLINE txt_cmdline noentry

ILOGIN_TXT_VISIBLE txt_visible noentry

ILOGIN_TXT_INTERACTIVE txt_interactive noentry

NAME_PROGMAN name_progman noentry

RLOGIN_TITLE noentry noentry

DIALOG_ICON noentry noentry

WTKSRV.INI Entries
User-Defined Configuration
Files

Command-Line
Options

 (2 of 2)
Using the Windows Client 12-49

Winframe from CITRIX
Winframe from CITRIX
Winframe is a multiuser port of Windows NT, Version 3.51, from Citrix. Thus,
through a small client (the ICA client), any user can use applications
compliant with Windows NT, Version 3.51, such as the Windows Client. This
makes maintenances much easier because everything is stored and running
on a unique computer.

However, the Windows Client needs to be configured to avoid the problem
of conflict between simultaneous users of each Windows Client. The problem
is that each occurrence of the Windows Client needs its own socket port to
communicate.

Two possible solutions are to:

■ install a different version of the WTK for each user and then set the
entry WTK_4GLSERVERPORT in the WTKSRV.INI configuration file to a
different value. This option is disk-space intensive and might be time
consuming.

■ install a single copy of the Windows Front-end and use one of the
two methods shown in “First Method” on page 12-50 and “Second
Method” on page 12-52.

First Method
With this method, the 4GL runtime package will try to automatically start the
client graphical daemon when a 4GL application is started. This is possible
because the 4GL application is running on the same computer as the one
running the graphical daemon. If you are using the Winframe computer only
for running the Windows front-end but the 4GL applications are running on
another computer (Windows NT or UNIX), you have to use the second
method.

Winframe sets the WINSTATIONNAME environment variable. This
environment variable follows the following structure:

aaaaaaa#nnnnn

where:

■ aaaaaa is the connection type (WinCenter, tcp, and so forth)

■ nnnnn is a unique connection type number
12-50 Informix Dynamic 4GL User Guide

First Method
One known exception for the WINSTATIONNAME environment variable is
that it can be set to Console when you are working directly on the Winframe
console.

In this example, suppose the Winframe server is named MYSERVER.

When starting a 4GL application (for example, fglrun ia.42r), the following
events might occur:

■ If FGLSERVER is set, the application will use it.

■ If FGLSERVER is not set, you must unset the DISPLAY environment
variable (otherwise, the F4GL runner assumes you are using a UNIX
X11 server, which is not the case).

■ Extract the nnnnn from the WINSTATIONNAME environment
variable and add 1 and this becomes the server number.

Example:

WINSTATIONNAME="WinCenter#002"The server number will be 3.
WINSTATIONNAME="Console"The server number will be 0 as the only
known exception is "Console".

At this stage, the runner tries to connect to MYSERVER:nnnn. If it does not
succeed, the runner will launch:

fglssrv -n nnnn
example:
fglssrv -n 2

This command can be set by fglrun.server.cmd in the fglprofile file. Then the
runner tries to reconnect to FGLSERVER=MYSERVER:nnnn. If it still does not
succeed, the runner says: error -1400.

The fglssrv command is a batch file located in the $FGLDIR/bin directory that
starts the 4GL Server with the port number passed as an argument incre-
mented by 6400.

Sometimes it might happened that two WINSTATIONNAME environment
variables are using the same nnnn number with two different connection
types. This can only occur when connections to the WINFRAME client are
coming from different kinds of clients. If you have only one kind of
connection client (ICA, Wincenter connect from NCD), this problem should
not occur.
Using the Windows Client 12-51

Second Method
Second Method
This method allows you to launch the 4GL graphical server with a unique
port number when the computer starts up.

You should put in your Startup group a copy of the WTK 4GL Server icon and
add at the end of the target line the word AUTO. The group name depends on
the language version you are using. For example:

Target:

C:\usr\FGL2CUSR\BIN\WTK.EXE -f C:\usr\FGL2CUSR\FGL2C\doserv1.tcl
AUTO

Start in:

c:\usr\fgl2cusr

Where, of course, c:\usr\fgl2cusr is the installation directory for WTK.

In this case, when the user logs into your Winframe server, a graphical
daemon is started with a unique number. With the tags like the @FGL strings,
you will be able to send the correct port number to the 4GL application server
with the command-line option of the ilogin connection feature.

The main default of this method is that the 4GL Server is always running even
if you do not start a 4GL application during the Winframe session.
12-52 Informix Dynamic 4GL User Guide

13
Chapter
Using the X11 Client
In This Chapter . 13-3

UNIX X11 Client Configuration 13-3
Installing the X11 Client 13-4

Prerequisites 13-4
Installing Tcl/Tk 13-4
Manually Installing Tcl/Tk 13-5
Installing the X11 Daemon 13-5
Setting the Tcl/Tk Environment Variables 13-5

Managing Application Windowing 13-5
Running the Program on the X11 Client 13-8

Displaying the TCL Interpreter 13-8
Configuring the Environment 13-10
Starting the Application Using the X11 Client 13-11

13-2 Inf
ormix Dynamic 4GL User Guide

In This Chapter
This chapter describes the X11 interface, including how to install and
configure the software.

UNIX X11 Client Configuration
The X11 Client displays your 4GL applications in graphical mode in
X11-compliant interfaces. The X11 Client is made up of the following two
software components:

■ Tcl/Tk interpreter

■ X11 daemon that manages communication between the Tcl/Tk
interpreter and the 4GL runner.

All communication uses the TCP/IP protocol, which allows the components
to be installed on different computers, as shown in Figure 13-1.

Figure 13-1
TCP/IP

Communication
Enables

Components to be
Installed on

Different
Computers

Tcl/Tk

4GL
Programs fglx11d X11

Client

TCP/IP communication TCP/IP communication
Using the X11 Client 13-3

Installing the X11 Client
Installing the X11 Client
The Tcl/Tk interpreter is included with a separate installation on the
Dynamic 4GL CD. You must use this enhanced version of the Tcl/Tk
interpreter. The X11 daemon called fglX11d is installed with both the UNIX
Dynamic 4GL development package and the runtime package.

Prerequisites

The X11 interface displays best using a monitor with at least 256 colors.

Installing Tcl/Tk

You must install Tcl/Tk first. You do not need to run this shell as root.
However, you need to have sufficient permissions to create the directories
where you want to install the Tcl/Tk package.

Follow these steps to install Tcl/Tk:

1. Mount the Dynamic 4GL CD on your file system:
$ mount your_cdrom_device_name /cdrom

Depending on your system, the syntax of the mount command can
be different. Check your UNIX manual. Also, depending on your
system, the names of the files located on the CD might be in either
lowercase or uppercase letters.

2. Go to the /cdrom/OS/UNIX directory.

3. Enter the following command to start the installation process:
$ sh ./INSTALLTCL.SH -i

If you do not specify -i flag, you get the syntax help message.

The installation determines your operating-system name and checks
for a few requirements, including if you already have a Tcl/Tk
package installed.

A prompt appears for the installation directory and starts copying
the files to your hard drive.

After the files are installed, the installation process prompts you for
a directory where the shell script envtcl is to be created. This script
sets the needed environment variables to make the Tcl/Tk
interpreter work. This script is written in a Bourne shell.
13-4 Informix Dynamic 4GL User Guide

Managing Application Windowing
Manually Installing Tcl/Tk

If you do not have a CD-ROM drive, copy the file tcltk.sh from the directory
/OS/UNIX/your_OS_name/SELFEXTR to your UNIX system. You must use
binary transfer (8-bit) and not ASCII transfer (7-bit) mode.

Follow the installation directions described in step 3 in “Running the
Program on the X11 Client” on page 13-8 to run the installation shell.

Installing the X11 Daemon

The daemon fglX11d is installed with the Dynamic 4GL development
package or the runtime package. This daemon is located in the $FGLDIR/bin
directory.

Setting the Tcl/Tk Environment Variables

The two environment variables that the envtcl file sets are:

■ TCL_LIBRARY—the path to the tcl libraries

■ TK_LIBRARY—the path to the tk libraries

The envtcl file also adds the /bin subdirectory to the PATH environment
variable.

After the installation is complete, execute the envtcl shell script to set the
correct environment to use the Tcl/Tk interpreter. Add a call to this script in
one of your startup files (.profile or .login).

Managing Application Windowing
The fglX11d daemon manages application windowing. One occurrence of
this daemon must be started for each X11 display.

This daemon can run on a computer other than the one where the 4GL
program runs or the one where the output is displayed.
Using the X11 Client 13-5

Managing Application Windowing
The fglX11d daemon uses a TCP/IP socket to communicate with the 4GL
program and uses the X11 standard DISPLAY mechanism to specify the
output interface, as shown in Figure 13-2.

The 4GL program opens a TCP/IP socket to the address and port number
specified by the FGLSERVER environment variable. This variable must be set
in the environment where the 4GL program will be started.

The syntax of the FGLSERVER environment variable is:

machine_ip_address : daemon_number

where machine_ip_address is set to the TCP/IP address or name of the
computer running the fglX11d daemon, and daemon_number is set to the
occurrence number of the fglX11d daemon. Each daemon started on one
computer should have a unique occurrence number.

Figure 13-2
Application
Windowing

Management
Architecture

Process 1

4GL
Programs

Process 2

4GL
Programs

Process 3

4GL
Programs

Tcl/Tk

Tcl/Tk

fglX11d

fglX11d

Process 4

Process 5

X11
Front End

X11
Front End

X11
Front EndTcl/Tk

fglX11d

Other UNIX Computer

UNIX Main Server
13-6 Informix Dynamic 4GL User Guide

Managing Application Windowing
Here is an example in a Bourne shell:

$ FGLSERVER=127.0.0.4:9
$ export FGLSERVER

These two lines tell the compiler the graphical daemon will run on the
computer with the IP address 127.0.0.4 and use the daemon number 9.

The second needed environment variable is DISPLAY, which tells the fglX11d
daemon which X11 server it must use for the graphical output (to your client
computer). This environment variable must be set in the environment where
the fglX11d daemon will be started.

The syntax of the DISPLAY variable is:

machine_ip_address : X_server

where machine_ip_address is set to the TCP/IP address or name of the client
computer, and X_server is set to the number of the X server that the client will
use. If you want to use the X11 server running on the computer with the IP
address 127.0.0.5 with the X11 server number 0, use the following commands:

$ DISPLAY=127.0.0.5
$ export DISPLAY

The last step is to start the fglX11d daemon with the following syntax:

$ fglX11d[-n daemonNumber] [-w wishName]
[-f scriptName] [-s portNumber]
[-e daemonNumber] [-l] [-v] [-a]

The following table describes the options in this command.

Option Description

-n daemonNumber Single ID to identify multiple daemon occurrences on one
host (default: 0)

-w wishName Name of the visual shell to be used (default: wish)

-f scriptName Name of the script to be used to initialize the server (default:
$FGLDIR/etc/fgl2c.tcl)

-s portNumber TCP port to be used (default: 6400)

-e daemonNumber Occurrence number of the daemon to shut down (default: 0)

(1 of 2)
Using the X11 Client 13-7

Running the Program on the X11 Client
Because this is a daemon, run the process in the background by adding the &
symbol at the end of the command line. To stop a started daemon, use the -e
option of the fglX11d daemon.

Running the Program on the X11 Client
This section describes how to configure the X11 Client (UNIX or Windows) to
run a sample compiled program.

For this example, the compiler and 4GL programs are on a UNIX server with
a TCP/IP name set to water. The program will be displayed using the X11
interface on a client computer named fire. The client computer fire has a
telnet or rlogin connection to the water computer.

Displaying the TCL Interpreter

1. Set the Tcl/Tk environment variables using the envtcl shell script.

If Tcl/Tk is installed in the /usr/local/tcltk directory, then the envtcl
file is located in this directory:

$ cd /usr/local/tcltk
$. ./envtcl

2. Check that the environment is correctly configured with the
following two commands:

$ echo $TCL_LIBRARY
$ echo $TK_LIBRARY

-l Logs all traffic to stderr

-v Gives the version information and exits

-a Gives the number of the next free daemon

Option Description

(2 of 2)
13-8 Informix Dynamic 4GL User Guide

Running the Program on the X11 Client
3. Set the DISPLAY environment variable with the following command
so that the computer water sends all graphical output to the
computer fire:

$ DISPLAY = "fire:0"
$ export DISPLAY

All graphical programs started in this environment will now be dis-
played by the X11 server number 0 of the computer fire.

4. Start the Tcl/Tk interpreter to check if it is correctly installed and if
the DISPLAY environment variable is correctly set:

$ wish

Your shell prompt should turn into a percent character (%), and a
small black square should appear. You are now in the Tcl/Tk Inter-
preter, as Figure 13-3 shows.

5. To quit, enter:
% exit

The small square should disappear, and the prompt should be
restored to your standard UNIX prompt.

Figure 13-3
Tcl/Tk

Interpreter
Using the X11 Client 13-9

Running the Program on the X11 Client
Configuring the Environment

Typically, the first user to run a graphical 4GL program on the computer
water would use the number 0 as the occurrence number for the fglX11d
daemon.

1. For this example, use 5 as the occurrence number:
$ fglX11d –n 5 &

Add the ampersand character (&) to the command line to cause the
daemon to execute in the background. The prompt can then be avail-
able for new commands.

2. Add the FGLSERVER environment variable to tell the 4GL program
which daemon to use.

In this case, the daemon is running on the computer water and the
occurrence number is 5:

$ FGLSERVER=water:5
$ export FGLSERVER

3. Check the value of the FGLGUI environment variable with the
following command:

$ echo $FGLGUI

If it is set to 0, the program will be executed in ASCII mode (exactly
as if compiled with 4GL compilers). If set to 1, it will use the fglX11d
daemon and the application appears in graphical mode.

4. Set the FGLGUI environment variable to 1 with the following
commands:

$ FGLGUI=1
$ export FGLGUI
13-10 Informix Dynamic 4GL User Guide

Running the Program on the X11 Client
Starting the Application Using the X11 Client

Now that you have set the environment variable, start the application.

1. Change to the directory where the program is compiled.

If you have compiled it to P code, the following files are in the
directory.

2. Type the name of your runner and, as the first parameter, the name
of the file resulting from the link between all the 4GL modules.

In this example, the runner can be fglnodb because you do not use
any calls to the Informix database interface.

$ fglnodb ex1.42r

If you have compiled the program to C code, you should have the
following files.

In this case, run the C-code executable:
$ ex1.42e

In either case, you get the same display on the computer fire.

3. Click the Message box menu item.

4. Select one of the four icon radio buttons.

5. Enter a title and a message into the appropriate text boxes.

Type of File Filename

The source files ex1-1.4gl, ex1-2.4gl, ex1-1.per

The compiled form ex1-1.42f

The P-code modules ex1-1.42m, ex1-2.42m

The P-code link ex1.42r

Type of File Filename

The source files ex1-1.4gl, ex1-2.4gl, ex1-1.per

The compiled form ex1-1.42f

The C-code executable ex1.42e
Using the X11 Client 13-11

A
Appendix
Environment Variables
This appendix provides a complete list of all environment
variables for use with Dynamic 4GL.

Some environment variables are only available on UNIX systems.
The description section states whether the environment variable
is only available on UNIX.

Dynamic 4GL Environment Variables
This appendix provides a brief description of each environment
variable and the possible values you can set for it, with examples
of how to set the environment variable on the available
platforms.

FGLGUI
FGLGUI

FGLDBPATH

Description This environment variable determines if the Dynamic 4GL
programs will run with a character-based ASCII user
interface or a graphical user interface (GUI).

Values 0 or not set The 4GL application executes
using ASCII mode

1 The 4GL application executes
using graphical mode

Default 0 on UNIX

1 on Windows

Korn shell $ export FGLGUI=1 Korn shell

C shell $ setenv FGLGUI 1 C shell

Microsoft DOS C:\> set FGLGUI=1 Microsoft DOS

Description This environment variable contains the paths to the schema
files of the databases used, separated by colons. The
compiler does not use the schema tables directly, but rather
its own schema file generated by fglschema.

Values The path to the schema file

Default Set to the current directory

Korn shell $ export FGLDBPATH=/schema:$FGLDBPATH

C shell $ setenv FGLDBPATH "/schema:$FGLDBPATH"

Microsoft DOS C:\> set FGLDBPATH=C:\schema:%FGLDBPATH%
A-2 Informix Dynamic 4GL User Guide

FGLDIR
FGLDIR

PATH

Description This environment variable contains the path to the
installation directory. This environment variable is required
when you use either the development package or the
runtime package of Dynamic 4GL.

Values The path to Dynamic 4GL

Default UNIX: /usr/fgl2c

Windows: C:\usr\fgl2c

Korn shell $ export FGLDIR=/usr/fgl2c

C shell $ setenv FGLDIR "/usr/fgl2c"

Microsoft DOS C:\> set FGLDIR=C:\usr\fgl2c

Description This system variable contains the path to the binary
programs. Add the path to the Dynamic 4GL binary
program.

Values The path to the binary directory

Korn shell $ export PATH=$FGLDIR/bin:$PATH

C shell $ setenv PATH $FGLDIR/bin:$PATH

Microsoft DOS C:\> set PATH=%FGLDIR%\bin:%PATH%
Environment Variables A-3

FGLCC
FGLCC

FGLRUN

Description Available only on UNIX. This environment variable must be
set when you want to compile a new runner.

Value The name of the C or C++ compiler

Korn shell $ export FGLCC=gcc

C shell $ setenv FGLCC gcc

Description This environment variable must be set to the name of the
specific P-code runner when linking P-code modules using
fgl2p –o. Use this environment variable for modules calling
C functions that have been linked to this runner by the
fglmkrun utility.

Value The name of the runner that you currently use

Default FGLRUN=fglrun

Korn shell $ export FGLRUN=fglrun

C shell $ setenv FGLRUN fglrun

Microsoft DOS C:\> set FGLRUN=fglrun
A-4 Informix Dynamic 4GL User Guide

FGLLDPATH
FGLLDPATH

FGLLIBSQL

Description This environment variable provides the P-code runner with
the correct search path for P-code object files, which are
dynamically linked into an executable P-code program.

Value The path to the P-code modules

Default The current directory

Korn shell $ export FGLLDPATH=/modules:$FGLLDPATH

C shell $ setenv FGLLDPATH /modules:$FGLLDPATH

Microsoft DOS C:\> set FGLLDPATH=c:\modules:%FGLLDPATH%

Description Available only on UNIX. This environment variable specifies
the complete path to the SQL library, to link with the P-code
runner or the C-code programs that contain the interface
functions to the database server.

Value Complete path to the SQL library

Default $INFORMIXDIR/lib/libfesql.a

Korn shell $ export FGLLIBSQL=$INFORMIXDIR/lib/libfesql.a

C shell $ setenv FGLLIBSQL $INFORMIXDIR/lib/libfesql.a
Environment Variables A-5

FGLLIBSYS
FGLLIBSYS

FGLSQLDEBUG

Description Available only on UNIX. This environment variable specifies
the list of system libraries and flags needed to compile a
P-code runner or C-code programs.

Default Depends of your host operating system

Korn shell $ export FGLLIBSYS="-lm –lsocket"

C shell $ setenv FGLLIBSYS "-lm –lsocket"

Description If set to 1, this environment variable sends to the standard
output debugging information about your current SQL
commands in a running 4GL program.

Value 0 disables the debugging feature

1 enables the debugging feature

Default 0
A-6 Informix Dynamic 4GL User Guide

FGLDEBUGON
FGLDEBUGON

GCC Environment Variables
These environment variables are only available on UNIX.

CC

Description Available only on UNIX. This environment variable allows you
to run the X11 graphical server (fglX11d) in debug mode. Each
operation is redirected to the standard output. This option is
not useful for debugging 4GL applications.

Value 0 or not set disables the debugging feature

1 enables the debugging feature

Default None

Korn shell $ export FGLDEBUGON=0

C shell $ setenv FGLDEBUGON 0

Description Available only on UNIX. This environment variable is set to
the name of the default compiler to use when compiling
C-language files.

Value The name of the compiler

Korn shell $ export CC="cc"

C shell $ setenv CC cc
Environment Variables A-7

GCC
GCC

GCCDIR

GCC_EXEC_PREFIX

Description Available only on UNIX. This environment variable specifies
the name of the GNU C Compiler.

Value The name of the GNU C compiler.

Korn shell $ export GCC=gcc

C shell $ setenv GCC gcc

Description Available only on UNIX. This environment variable specifies
the directory in which the GNU C compiler is installed. This
environment variable is used only by Dynamic 4GL

Value The path of the gcc installation directory

Korn shell $ export GCCDIR=/usr/local/gcc-2.80

C shell $ setenv GCCDIR /usr/local/gcc-2.80

Description Available only on UNIX. This environment variable specifies
the path of the installation directory of the GCC compiler.

Value Path to the gcc installation directory

Korn shell $ export GCC_EXEC_PREFIX=/usr/local/gcc-2.80

C shell $ setenv GCC_EXEC_PREFIX /usr/local/gcc-2.80
A-8 Informix Dynamic 4GL User Guide

PATH
PATH

Tcl/Tk Environment Variables
These environment variables are available only on UNIX.

TCLDIR

Description Available only on UNIX. This environment variable specifies a
list of the directories where the operating system looks for a
needed executable file.

Value Path to the binary program

Korn shell $ export PATH=$GCCDIR/bin:$PATH

C shell $ setenv PATH $GCCDIR/bin:$PATH

Description Available only on UNIX. This environment variable is used
only with the Tcl/Tk package included in Dynamic 4GL. This
environment variable specifies the full path to the installation
directory of the Tcl/Tk .

Value Complete path to the Tcl/Tk installation directory

Korn shell $ export TCLDIR=/usr/local

C shell $ setenv TCLDIR /usr/local
Environment Variables A-9

TK_LIBRARY
TK_LIBRARY

TCL_LIBRARY

PATH

Description Available only on UNIX. This environment variable specifies
the full path to the TK library subdirectory.

Value Full path to the TK library subdirectory

Korn shell $ export TK_LIBRARY=/usr/local/lib/tk

C shell $ setenv TK_LIBRARY /usr/local/lib/tk

Description Available only on UNIX. This environment variable specifies
the full path to the TCL library subdirectory.

Value Full path to the TCL library subdirectory

Korn shell $ export TCL_LIBRARY=/usr/local/lib/tcl

C shell $ setenv TCL_LIBRARY /usr/local/lib/tcl

Description Available only on UNIX. This environment variable specifies
the list of directories where the operating system looks for a
needed executable file.

Value Path to the binary program

Korn shell $ export PATH=$TCLDIR/bin:$PATH

C shell $ setenv PATH $TCLDIR/bin
A-10 Informix Dynamic 4GL User Guide

B
Appendix
Common Problems and
Workarounds
This appendix contains information about how to resolve issues
in the following areas:

■ Installing the Dynamic 4GL software manually

■ The interruption signal

■ The P-code runner and C-code compilation

■ Special characters and the GLS feature

■ The Windows Client

■ 4GL program errors

■ X11 issues

■ Windows issues

Installing the Dynamic 4GL Software
Manually
If you have problems installing the Dynamic 4GL software, you
can perform a manual installation.

Logging On and Loading the Files
Log on as root. If you have an earlier version of the software on
your system, make sure no one is using it during the installation
of the new one, and stop all Dynamic 4GL daemons.

Manual Installation Process
Files with the extension .tgz are compressed archive files. To uncompress this
kind of file, you must first run gzip and then tar with the following
commands:

$ gzip -d filename .tgz
$ tar xvf filename .tar

Before uncompressing the file with tar, you can view its contents with the
following command:

$ tar tvf filename .tar

Distributions on tapes can be loaded with the following commands:

$ cd /tmp
$ tar xvf /dev/ your_device

On the distribution CD, you will find all the necessary files in the
/OS/UNIX/your OS name directory.

Manual Installation Process
The archive file is assumed to be named:

F4GL.TGZ

This archive file contains a complete directory tree, which can be installed
anywhere.

A convenient way to proceed is:

$ mkdir installdir /f4gl. version
$ cd installdir /f4gl. version
$ FGLDIR= installdir /f4gl. version
$ export FGLDIR
$ INFORMIXDIR= Path_to_Informix_directory
$ export INFORMIXDIR
$ cp path_to_gzip_file .
$ gzip -d F4GL.TGZ
$ tar xvf F4GL.tar

where installdir is the path to the installation directory. The following
examples illustrate how to do both a new installation and an update.
B-2 Informix Dynamic 4GL User Guide

Manual License Installation
For a new installation:

$ mkdir /usr/f4gl
$ cd /usr/f4gl
$ FGLDIR=/usr/f4gl
$ export FGLDIR
$ INFORMIXDIR=/usr/informix4.1
$ export INFORMIXDIR
$ cp CD/OS/UNIX/SCO/COMPILER/F4GL.TGZ .
$ gzip -d F4GL.TGZ
$ tar xvf F4GL.tar

For an update, first make a backup of your earlier version:

$ mkdir /usr/f4gl.save
$ cd /usr/f4gl
$ tar cvf /usr/f4gl.save/f4gl- version .tar .
$ gzip /usr/f4gl.save/f4gl- version .tar

Now you can install the new one:

$ cp CD/OS/UNIX/SCO/COMPILER/F4GL.TGZ .
$ gzip -d F4GL.TGZ
$ tar xvf F4GL.tar

Manual License Installation
To install or reinstall a license, the FGLDIR environment variable has to be set
to the directory where you have installed the product, and the $FGLDIR/bin
directory has to be added to your PATH variable. Then execute the following
commands:

$ cd $FGLDIR/bin
$ licencef4gl

This will start the license installation process, as described in “Licensing the
Software” on page 2-11.

Post-Installation Tasks
If you are doing a manual installation, you need to complete the following
procedures by hand before you can use Dynamic 4GL. If you are performing
an automatic installation, these tasks are done for you.
Common Problems and Workarounds B-3

Post-Installation Tasks
The C Compiler

During this phase, you might need a C compiler. It is required if you plan to
create a new runner or if you want to compile your 4GL programs to C code.
But it is not used afterward for P-code compilation. You can use either the
native C compiler of the computer or the C compiler of the GNU tools,
included on the distribution media.

If there is no usable native C compiler on your computer, the GNU tools must
be installed. However, you still need to have your UNIX system libraries
installed.

To install the GNU C compiler from the Dynamic 4GL CD, go into the
OS/UNIX/ directory and run the following command:

$ /bin/sh ./insttgcc –i

This shell script installs the package GCC.TGZ located in the directory
/OS/UNIX/your_OS_name/GNUC.

If you cannot mount the CD directly on UNIX, you can copy the file gnuc.sh,
located in the directory /OS/UNIX/your_OS_name/SELFEXTR, to a temporary
directory on UNIX. Use binary transfer mode because this shell script
contains all the files of the GNU C compiler. Then run the following command
to start the installation:

$ /bin/sh ./GNUC.SH -i

During the installation process, you will be prompted for the installation
directory of the GNU C compiler. A shell script named envgcc will also be
generated during the installation. You must execute this shell script to set all
the environment variables needed for compiling and linking C programs.

Tip: This distribution does not contain the system libraries you need to compile C
sources. To obtain those libraries, contact your operating-system reseller.

If you plan to link a runner without any C functions, you only need to install
a linker and not an ANSI-C compliant compiler.
B-4 Informix Dynamic 4GL User Guide

Post-Installation Tasks
If you are not using the default C compiler (normally cc), make sure that you
have set the INFORMIXC environment variable to the compiler you are using
(such as gcc for the GNU C compiler,) as well as the documented FGLCC and
CC variables. For example:

INFORMIXC=gcc
export INFORMIXC

Finding the Required Libraries: findlib.sh

The first step is to identify the Informix libraries, the UNIX system libraries,
and the Dynamic 4GL libraries needed to create the libraries and the P-code
runner. To do so, run the findlib.sh Bourne shell script located in the bin
subdirectory where Dynamic 4GL is installed. This step requires a C compiler
and the INFORMIX-ESQL/C development libraries:

$ /bin/sh ./findlib.sh

This script generates a file called envcomp in the local directory. This shell
script sets all the environment variables necessary to create the P-code runner
and the 4GL libraries, which allow you to compile to C code and to execute
4GL programs. Execute this Bourne shell script with the following command:

$. /envcomp

Creating the P-Code Runner and Libraries

You are now ready to create the P-code runner. This runner contains all the
routines to access to the Informix database with your version of the Informix
database interface. This runner is used when you link your 4GL source code
modules together and when you run the P-code compiled 4GL programs.

The runner is the result of linking your Informix libraries, your UNIX system
libraries, and the Dynamic 4GL libraries. Each time that one of these three
components changes, you must create a new runner. If you have C functions,
you must also include them in the runner. For more information about using
C functions with 4GL, see “Using C Functions in 4GL Applications” on
page 4-8.

Important: Creating the P-code runner for your computer requires a C compiler and
the INFORMIX-ESQL/C development libraries.
Common Problems and Workarounds B-5

Post-Installation Tasks
To build a P-code runner, type:

$ fglmkrun

This command creates the default P-code runner, called fglrun, in the
$FGLDIR/bin directory.

If you need your own, statically-linked runner, use the syntax in the
following example (assume your runner is named myrun, you are using
Informix Client SDK version 2.10, and using a C function file named file.c):

$ fglmkrun -d ix914 -add -static $FGLDIR/lib/fglExt.c
file.c -o myrun

After you have successfully created the P-code runner, run the rtsinstall
command to create the P-code libraries and tools:

$ rtsinstall

For details about fglmkrun, see “Details About fglmkrun” on page 4-11.

SCO Systems

With SCO systems, the use of fglmkrun during a manual installation might
cause the following error message:

Symbol not found
First referenced in file

fileno .../lib/libf2c.a

The solution is to first create a file named fileno.c that contains the following
code:

#include stdio.h
#undef fileno
int fileno(f)
FILE *f ;
{
return(f->__file) ;
}

Next, execute fglmkrun with fileno.c as an additional parameter (for
Informix Version 5.x):

$ fglmkrun -o fglrun fileno.c $FGLDIR/lib/fglExt.c

This creates the runner named fglrun in the current directory.
B-6 Informix Dynamic 4GL User Guide

Interruption Signal
Creating the C-Code Libraries

If you have Version 6.x or Version 7.x Informix database servers, set the
FGLDBS environment variable with ix711:

$ FGLDBS=ix711
$ export FGLDBS

Then run the fglinstall program in order to compile the C-code libraries and
tools:

$ fglinstall

You are now ready to compile 4GL programs on UNIX.

Interruption Signal
When you press the interrupt key or the Interrupt button, your client
computer intercepts this and sends it to the server. It is not possible to send
an interrupt signal over the network, so Dynamic 4GL sends an MSG_OOB
(out of band) message through the connected socket, which is the real
interrupt message for network operations.

Usually, the application server receives this signal and stops the application.
Problems can occur in the following situations:

■ The client TCP/IP stack does not support the OOB message. This is
often the case with the TUN TCP/IP stack from ESKER. In this case,
you must disable the OOB functionality. The compiler will then send
a whole command over the network to the server computer to stop
the application. Add the following line in your fglprofile file:

gui.useOOB.interrupt=0

■ The application server TCP/IP stack does not handle OOB signals.
In this case you must also disable the OOB mechanism and use the
following setting in the fglprofile:

gui.useOOB.interrupt=0
Common Problems and Workarounds B-7

P-Code Runner and C-Code Compilation
■ The application server uses a different code number for the OOB
message. Some systems use different signals to code the OOB
message. For example, the signal number changed between SCO
OPEN SERVER 5.02 and SCO OPEN SERVER 5.04. To determine the
received signal that your system uses, add the following line in your
fglprofile:

fglrun.signalOOB= -1

Then execute a 4GL program and press the interrupt key multiple
times. You will see messages similar to the following message on
your terminal:

Enable trappings of signal
Received signal is 18

(18 is subject to change depending on systems)
Hit your interrupt key twice:
Received signal is xx
Received signal is xx

The value xx is returned by your operating system when an OOB
message is received on a socket. You can specify this number in the
fglprofile file with the entry:

fglrun.signalOOB= xx

P-Code Runner and C-Code Compilation
This section describes how to specify which Informix libraries to use and how
to find missing system libraries on UNIX.

Finding Informix 7.x Libraries on UNIX
The best way to specify the list of Informix libraries to use is to set the
FGLLIBSQL environment variable to that list. This list of libraries changes,
depending on the version of ESQL/C and the operating system. This section
describes a convenient way to find out which libraries are used if the
findlib.sh script failed to find them.
B-8 Informix Dynamic 4GL User Guide

Finding Informix 7.x Libraries on UNIX
If you are using ESQL/C, copy the script $INFORMIXDIR/bin/esql to an
empty directory. Modify this copy in order to echo the linking command.
For example:

echo $CC -I$INFDIR/incl/esql $INCLUDE $A -L $INFDIR/lib \
-L $INFDIR/lib/esql $SLIB $OLIB $ALIB

Write a small ESQL/C File. For example, t.ec:

main(argc,argv)
int argc; char *argv[];
{
}

Compile it using your copy of ESQL:

$./esql t.ec

This gives you the compile statement with all the libraries used on the
standard output. For example:

cc -I/usr1/informix7.11/incl/esql t.c -L /usr1/informix7.11/lib -L
/usr1/informix7.11/lib/esql -L /usr1/informix7.11/lib/esql
/usr1/informix7.11/lib/esql/libsqlshr.a -L
/usr1/informix7.11/lib/esql /usr1/informix7.11/lib/esql/libosshr.a
-L /usr1/informix7.11/lib /usr1/informix7.11/lib/libasfshr.a -L
/usr1/informix7.11/lib/esql
/usr1/informix7.11/lib/esql/libgenshr.a -L
/usr1/informix7.11/lib/esql /usr1/informix7.11/lib/esql/libosshr.a
-L /usr1/informix7.11/lib/esql
/usr1/informix7.11/lib/esql/libgenshr.a -ltli -L
/usr1/informix7.11/lib /usr1/informix7.11/lib/libnetstubshr.a -lc
-lmsaa -lbsd

In this case, you would have to set your environment variable FGLLIBSQL
like this:

$ export FGLLIBSQL"$INFORMIXDIR/lib/esql/libsqlshr.a
$INFORMIXDIR/lib/esql/libosshr.a
$INFORMIXDIR/lib/libasfshr.a
$INFORMIXDIR/lib/esql/libgenshr.a
$INFORMIXDIR/lib/esql/libosshr.a
$INFORMIXDIR/lib/esql/libgenshr.a
/usr/lib/libtli.a
$INFORMIXDIR/lib/libnetstubshr.a
/usr/lib/libc.a
/usr/lib/libmsaa.a
/usr/lib/libbsd.a "
Common Problems and Workarounds B-9

Finding System Libraries on UNIX
If you do not have ESQL/C development but only 4GL development on your
system, the way to proceed is similar to that with ESQL/C, except that you
will copy and modify the script $INFORMIXDIR/bin/c4gl and use the copy to
compile a 4GL example, but then you must remove the libraries from the list
that are specific to INFORMIX-4GL.

Finding System Libraries on UNIX
On some operating-system implementations, the libraries might have been
split. When linking, you might discover some undefined symbols. For
example, if the findlib.sh script failed to find the required libraries, one way
to find the missing libraries would be as follows.

Given a missing function named funcname, execute the following UNIX shell
command:

$ for i in /lib/*.a /usr/lib/*.a
>do
> echo $i
>nm $i | grep funcname
>done | pg

If the result looks like:

/usr/lib/libname.a
funcname| 1640|glob | | 0

and the first number is greater than zero (here it is 1640), the library
libname.a must be added to the list of the system libraries needed to create a
P-code runner or a C-code application. This list is specified by the FGLLIBSYS
environment variable and is built in the same way as FGLLIBSQL.

Informix 7.2x and Special Characters
If a program aborts when you use special characters (for example, a German
diaeresis or a French accent) in a CONSTRUCT, it is because Global Language
Support (GLS) is active with Informix 7.2x database servers.

When you create the database, you must set the environment variable
DB_LOCALE. If it is not set, the database will be installed with U.S. English
locale (en_US.859-1.)
B-10 Informix Dynamic 4GL User Guide

Workarounds for the Windows Client
You can view the current configuration with the following SQL statement:

SELECT * FROM systables WHERE tabid IN (90,91).

If the database is not created with the correct configuration, it must be
unloaded with dbexport, dropped, and imported with the dbimport
command and with the DB_LOCALE environment variable set to the proper
value (for example, de_de.8859-1 for German).

To see which local versions are supported, run:

$INFORMIXDIR/bin/glfiles

This command will create the file lcll.txt in which you see the supported
versions.

Workarounds for the Windows Client
This section describes workarounds for Windows Client problems.

Slow rlogin and Some Characters Appear Twice
With WTK, you can have a slow rlogin connection and some characters can
appear twice or more for each key press. This can happen if, in the file
wtksrv.ini, you set the variable CHECK_PASSWORD=1 and the program does
not recognize the successful login (string LOGIN_OK).

It is possible to trace what happened during the connection process by
adding the following lines to the file wtksrv.ini:

LOGIN_DEBUG=1

Search the login debug terminal for the line:

term0:switch to normal terminal mode.

If this line is present, you do not have a problem. If this line is not present,
you must find a string LOGIN_OKthat is common to all systems that you will
connect to.
Common Problems and Workarounds B-11

Problems with the SCO Server
Problems with the SCO Server
With the Windows Client, if unexpected characters appear on the screen with
the terminal emulation, change the following line in the WTKDIR\wtksrv.ini
file in the [RLOGIN] section:

sendwinsize=1

to

sendwinsize=0

This problem appears only on SCO and Windows NT systems.

DOS Naming Conventions
Do not install the Windows Client in a directory that does not conform to the
8.3 naming convention. For example, you cannot install the package in a
directory named directoy~1.name, but you can install it in a directory named
mydir.

Installing a New Windows Client
If you want to install a new Windows Client (not an update), you must delete
the following files:

C:\WINDOWS\WTK.INI
C:\WINDOWS\4GLSERV1.INI

Graphical Daemon on Windows Gives Link Error
If the graphical server tells you that it cannot find a link, this is probably
because the TCP/IP socket protocol is not installed on the client computer.
You can check if the file winsock.dll is in the Windows directory. If not,
install the TCP/IP socket support on your client computer.
B-12 Informix Dynamic 4GL User Guide

4GL Program Errors
4GL Program Errors
This section describes workarounds to use if you experience errors with your
4GL program.

Internal Data File Corrupted
On some UNIX systems (for example, SCO), you might receive the following
error message:

Internal data file corrupted. Cannot continue this program.

After that, your program fails.

This failure occurs because the process table of UNIX systems is used to
retrieve internal information. This information is stored in the $FGLDIR/lock
directory. To view this table, use the UNIX command ps –ae.

Normally, this gives the complete list of processes. But on some operating
systems (such as SCO), you see only the processes of the current user if you
are not the superuser.

If you receive the error message, check your UNIX documentation for a
command that gives the complete list of processes and then set the
environment variable FGLPS to this value. For example:

FGLPS="ps -aefx"
export FGLPS

If there is no command that allows a non-superuser to view the whole
process list on the operating system, you can use the following procedure
(you need a C compiler installed on your computer):

■ Log in as root:
$ cd $FGLDIR/src

■ Edit the file psall.c and change the «ps -ae» command if needed:
$ cc -o psall psall.c
$ cp psall $FGLDIR/bin
$ cd $FGLDIR/bin
$ chown root psall
$ chgrp root psall
$ chmod 0755 psall
$ chmod a+s psall
Common Problems and Workarounds B-13

Values of Streams on SCO Computers
Add to your environment file (for example: .profile, envcomp,
$FGLDIR/envf4gl) the lines:

FGLPS="psall"
export FGLPS

It is also possible that the file system is full and the 4GL application cannot
create the internal data files in the $FGLDIR/lock directory. Use the command
df to check whether you have enough free space on the file system where
Dynamic 4GL is installed.

Values of Streams on SCO Computers
Stream values must be big enough, depending on the UNIX node (using TCP,
NFS, or other nodes).

To check if the stream size is large enough, log in as root, use the «crash»
command and the «strstat» command. The values in the FAIL column must
always be zero.

For example:

crash (
dumpfile = /dev/mem, namelist = /unix, outfile = stdout
> strstat (
ITEM CONFIGALLOC FREE TOTAL MAX FAIL
streams 512 52 460 75 53 0
queues 1424 240 1184 172 244 0
message blocks 6258 124 6134 3673 269 0
data block totals 5007 124 4883 3103 198 0
data block size4 512 21 491 207 29 0
data block size16 512 3 509 428 67 0
data block size64 512 31 481 2115 40 0
data block size1282048 54 1994 242 57 0
data block size2561024 15 1009 55 17 0
data block size512256 0 256 28 1 0
data block size102452 0 52 9 1 0
data block size204850 0 50 14 1 0
data block size409641 0 41 5 1 0

SCO Open Server 5 and GCC Compiler
SCO Open Server 5 file format is ELF 32b. The GCC compiler provided by
Dynamic 4GL uses file format COFF (and produces COFF binary files).
Therefore, do not install GCC on this host server; instead, use your native host
C compiler, which understands the COFF file format.
B-14 Informix Dynamic 4GL User Guide

Key Buttons Missing
If you receive the following error after compiling:

undefined symbol __write in $FGLDIR/lib/libgcc.a

use the following procedure:

■ Create and edit file dummywrite.c.

■ Add the following C code in the file dummy.c:
int __write(int fd, char *c, int l) {

return(write(fd,c,l));
}

■ Compile the file dummywrite.c with your native C compiler.

■ Execute the shell command «ar» and apply it to the library
$FGLDIR/lib/libgcc.a as follows:

cd $FGLDIR/lib
rv libgcc.a dummywrite.o

Now you are ready to link your runner.

Key Buttons Missing
If you are using an SCO system and no key buttons appear, change the dot (.)
to a comma (,) in the In /usr/lib/lang/$LANG/*/*/numeric file.

To test, call wish or tclsh, and try expr 3.4 + 3 or expr 3,4 + 3. One of them
must run. Our syntax uses the dot. Here is an example:

LANG=german

in /usr/lib/lang/german/germany/*/numeric.

You cannot make the modification directly with a text editor. You have to
look at the file with od -c numeric. For example, if you get:

00000000 002 , . \0 \0 \0
00000005

then you must use the command:

$ echo -n "\002.,\000\000 > numeric

Make sure you save the original version. You should then see the file as:

00000000 002 . , \0 \0 \0
00000005
Common Problems and Workarounds B-15

Workarounds for X11
Workarounds for X11
This section describes various other workarounds that you will find helpful.

No Program Display at Startup
If you are using the X11 front end and the daemon (fglX11d) is started
successfully, and you can run the wish program and get the wish window,
but when starting a program, nothing appears, the problem is usually that
the default font from the program does not exist in the database.

The solution is to run «fglfontsel» in ASCII (FGLGUI=0) with the same
username as the one that runs the daemon. Select a font with ESC, restart the
daemon, and then restart the program in graphical mode. Select the correct
font with fglfontsel under X11.

Numlock, X11, and the Mouse
With NumLock on, some mouse features do not run under X11. To disable
this effect, run the following command:

$ xmodmap

which displays lines similar to the following:

shift Shift_L(0x32), Shift_R(0x3e)
lock Caps_Lock(0x42)
controlControl_L(0x25), Control_R(0x6d)
mod1 Alt_L(0x40)
mod2 Num_Lock(0x4d)
mod3 Mode_switch(0x71)
mod4
mod5

If you do not see Num_Lock, your keyboard is already correctly configured.
Otherwise, see which modifier (mod2 in the example) corresponds to
Num_Lock, and enter:

$ xmodmap -e "clear mod2"

You can add line "clear mod2" in file $HOME/.Xmodmap to be correctly
configured at every start of X11.
B-16 Informix Dynamic 4GL User Guide

CapsLock and Scrollbar
To enable the numeric keypad with the Num_Lock key disabled, specify the
following lines in the file $HOME/.Xmodmap:

keycode 63 = KP_Multiply
keycode 79 = KP_7
keycode 80 = KP_8
keycode 81 = KP_9
keycode 82 = KP_Subtract
keycode 83 = KP_4
keycode 84 = KP_5
keycode 85 = KP_6
keycode 86 = KP_Add
keycode 87 = KP_1
keycode 88 = KP_2
keycode 89 = KP_3
keycode 90 = KP_0
keycode 91 = KP_Decimal
keycode 108 = KP_Enter
keycode 112 = KP_Divide

This forces the keypad keys to send the digit as if the Num_Lock key were
active. The key code might change, depending on your keyboard layout.

CapsLock and Scrollbar
If CapsLock is on, the scrollbar does not work in GUI mode with the X11 front
end.

Workarounds for Windows
This section describes workarounds for problems with Windows NT and
workarounds for problems that involve UNIX-to-Windows configurations.

Problems with the File fgl2c tcl on Windows NT
Never change or edit fgl2c.tcl on Windows NT. If you do that, ^M characters
are automatically added to the end of each line, and the WTK client will not
run.
Common Problems and Workarounds B-17

Problems Using the rcp Command
Problems Using the rcp Command
If you do not have permission to use the rcp command from the UNIX side to
access a Windows computer having Ataman remote login services installed,
perform the following steps:

■ On Windows, display the Advanced page in the Ataman TCP
Remote Logon Services dialog box.

■ In the Rshd and Rexecd areas, leave the List of hosts allowed to
connect field empty.

This disables both functions because you already have them with the
4GL server, and they can cause some conflicts.

Terminal Emulation Issues
With Windows front-end terminal emulation, when you open a file with vi
and use the DOWN ARROW key to move the cursor down for more than one
page, the lines are often displayed on the same line on the bottom of the
screen without scrolling the previous lines upward.

This occurs because with Windows you have a 25-line terminal. To fix this
problem, in xterm termcap, change the definition from li#24 to li#25. On
some systems, you can also export the LINES environment variable set to 25.

Memory Fault with ESQL 7.20.TD1 with Windows NT 4.0
Informix ESQL/C, Version 7.20.TD1 with Windows NT 4.0, causes a memory
fault with some Informix instructions (for example, UNLOAD). You must use
ESQL 7.20.TE1 to fix this problem.
B-18 Informix Dynamic 4GL User Guide

How to Start a Windows Program from the UNIX Server
How to Start a Windows Program from the UNIX Server
From Linux, enter the following command:

$ rsh PC_name "winexec progname.exe"

From your UNIX system, enter the following command:

$ rcmd PC_name "winexec progname.exe"

To open a file directly, enter:

$ rcmd PC_name "winexec \"progname.exe c:/autoexec.bat\"" ?

The graphical daemon must be running when you try this command.

emm386 on Windows 3.11
To speed up your applications on Windows 3.11 client computers, you
should not use the emm386 memory manager.
Common Problems and Workarounds B-19

C
Appendix
Error Messages
This appendix lists error messages and suggested solutions for
the following kinds of errors:

■ Form compilation errors

■ 4GL compilation errors

■ Runtime errors

■ UNIX X11 client errors

■ License errors

■ fglmkrun errors

Form Compilation Errors
-1312 FORMS statement error number <number>.

Description. An error occurred in the form at runtime.

Solution. Edit your source file, go to the specified line, correct the
error, and recompile the file.

-1314 Program stopped at <filename>, line number <number>.

Description. At runtime an error occurred in the specified file at
the specified line. No .err file is generated.

Solution. Edit your source file, go to the specified line, correct the
error, and recompile the file.

-1320 A function has not returned the correct number of values
expected by the calling function.

Form Compilation Errors
Description. A function that returns several variables has not returned the
correct number of parameters.

Solution. Check your source code and recompile.

-2975 The display field label tag-name has not been used.

Description. A field tag has been declared in the screen section of the form-
specification file but is not defined in the attributes section.

Solution. Check your form-specification file.

-6601 fglform: Cannot open database dictionary <filename>. Run fglschema
database.

Description. If you use references to a database in your form, to compile it,
Dynamic 4GL needs the database dictionary.

Solution. Run the program fglschema with the name of the database as a
parameter or check the value of the environment variable FGLDBPATH.

-6802 fglform: Cannot open Database dictionary '<name>'. Run fglschema
database.

Description. The form compiler cannot find the schema of the specified
database.

Solution. Check if the schema of the database exists and check if the
FGLDBPATH environment variable is well set to the path to the schema.

-6805 Open Form <name>', Bad Version:<number>, expecting: <number>.

Description. The form that you are trying to open has been compiled with an
old version of the compiler.

Solution. Recompile your form with the new form compiler.
C-2 Informix Dynamic 4GL User Guide

4GL Compilation Errors
4GL Compilation Errors
-4900 fglcomp: This syntax is not supported here. Use [screen record name.] screen

field name.

-4901 fglcomp: Fatal INTERNAL error: <fieldname>.

Description. This error occurs when an incorrect field name is used in a
BEFORE FIELD or AFTER FIELD statement.

Solution. Check your 4GL source code and recompile your application.

-6011 Demonstration version.

Description. This message is displayed only by the demonstration version.

Solution. This message is for informational purposes only.

-6020 Installation: Cannot open <filename>.

Description. A file is missing.

Solution. Check that the file permissions are correct for the user trying to
execute an application. If the file is missing, re-install the compiler package.

-6023 C-code generation is not allowed with the demonstration program.

Description. Dynamic 4GL can compile in P code and in C Code (only for the
UNIX version). But with the demonstration version, C-code compilation is
not available.

Solution. Compile your program in P code.

-6601 Cannot open database dictionary <filename>. Run fglschema database.

Description. In your source file you used the syntax database my_base, at the
top of the file, before the main section. To compile the form and source code,
Dynamic 4GL needs the database dictionary.

Solution.To resolve the problem, run the program fglschema and put as a
parameter the name of the database, or put the DATABASE statement in the
main section just after the variable declaration and before the first call to the
database.
Error Messages C-3

4GL Compilation Errors
-6602 Cannot open globals file <filename>.

Description. In the source, you used GLOBALS but the file is not in the current
directory.

Solution. Copy the globals file filename in the current directory, or add the
complete path to the globals file filename in the compile command, or check
the name of your globals file.

-6603 The file <filename> cannot be created for writing.

Description. The compiler cannot create an output file at compile time.

Solution. Check that there is no filename in the directory that has the same
name as the output file, but with insufficient permission for the current user
to overwrite it. Also check if the user has permission to create a file in the
current directory.

-6605 The module <name> does not contain function <name>.

Description. The specified function is not included in the named module.

Solution. Locate in your source code the call to this function and correct the
module name or the function name.

-6606 No member function <name> for class <name> defined.

Description. The specified member function of the named class is not defined.

Solution. Locate in your source code the call to this function and correct the
class name or the function name.

-6607 Wrong number of dimensions for <array>.

Description. An array is called with a wrong number of dimensions in your
4GL application.

Solution. Check your 4GL source code and recompile your application.

-6608 Resource error: <number>: parameter expected.

Description. An unexpected error occurred.

Solution. Contact Informix Technical Support.
C-4 Informix Dynamic 4GL User Guide

Runtime Errors
Runtime Errors
-1310 Program error at <filename>, line number <number>.

Description. Your program generates an error at runtime because of a logical
mistake.

Solution. Check your 4GL source code and recompile your application.

-1311 Date: <date> Time: <time>

Description. This is internal information.

Solution. No solution is required.

-6300 Cannot connect to a GUI.

Description. You have run a GUI application but the environment variable
DISPLAY or FGLSERVER is not set correctly.

Solution. Before running the GUI application, check your environment
variables. FGLSERVER must be set on the graphical server computer. This is
the computer that executes the fglX11d daemon for a UNIX system or the 4GL
server for Windows systems. DISPLAY must be set on the client computer. For
Windows, this variable cannot be set. Also check if the graphical daemon is
running.

-6301 Cannot write to the GUI.

Description. You have run a GUI application but the environment variable
DISPLAY or FGLSERVER is not set correctly.

Solution. Before running the GUI application, check your environment
variables. FGLSERVER must be set on the graphical server computer. This is
the computer that executes the fglX11d daemon for a UNIX system or the 4GL
server for Windows systems. DISPLAY must be set on the client computer. For
Windows, this variable cannot be set. Also check if the graphical daemon is
running.

-6302 Cannot read from the GUI.

Description. You have run a GUI application but the environment variable
DISPLAY or FGLSERVER is not set correctly.
Error Messages C-5

Runtime Errors
Solution. Before running the GUI application, check your environment
variables. FGLSERVER must be set on the graphical server computer. This
computer executes the fglX11d daemon for a UNIX system or the 4GL server
for Windows systems. DISPLAY must be set on the client computer. For
Windows, this environment variable cannot be set. Also check if the
graphical daemon is running.

-6303 Wrong script (fgl2c.tcl) version. Check installation.

Description. The graphical daemon has loaded a version of the client different
from the one defined in the resource files of the current version as defined by
the $FGLDIR environment variable.

Solution. Stop and restart the graphical daemon each time you change the
graphical client.

-6304 Wrong server (wtkclt) version. Check installation.

Description. The graphical daemon has loaded a version of the client different
from the one defined in the resource files of the current version as defined by
the $FGLDIR environment variable.

Solution. Stop and restart the graphical daemon each time you change the
graphical client.

-6306 Cannot open server file. Check installation.

Description. A file on the server side cannot be sent to the graphical interface.

Solution. Check the permission of the file located in the $FGLDIR/etc
directory. These files must have at least read permission for the current user.

-6307 Server autostart: cannot identity workstation.

Description. You must set the FGLSERVER environment variable, as well as
the entry of the autostart feature in the $FGLDIR/etc/fglprofile file.

Solution. Set the needed environment variables or add values in the
$FGLDIR/etc/fglprofile file to enable the graphical daemon autostart feature.

-6308 Server autostart: unknown workstation: set fglrun.server.<number> =
<aliaslist>.

Description. The computer described by the entry fglrun.server.## in the
fglprofile file is not accessible on the network.
C-6 Informix Dynamic 4GL User Guide

Runtime Errors
Solution. Check if the computer name is correctly set in the DISPLAY or
FGLSERVER environment variable.

-6309 Not connected. Cannot write to the GUI.

Description. The communication between the 4GL application and the
graphical client is broken.

Solution. Check if the $FGLSERVER and the $DISPLAY variables are correctly
set. Also check if the daemon of the graphical front end is running.

-6310 Not connected. Cannot read from the GUI.

Description. The communication between the 4GL application and the
graphical client is broken.

Solution. Check if the $FGLSERVER and the $DISPLAY environment variables
are correctly set. Also check if the daemon of the graphical client is running.

-6320 Cannot open file <filename>.

Description. The compiler cannot access the resource file
$FGLDIR/etc/fgl2c.res.

Solution. Check the permissions of the resource file and change them as
needed. The current user should have read permission on this file.

-6321 No such interface capability: <filename>.

Description. The resource files from the graphical client are from different
versions. This is often caused by installing an update over an old version of
the compiler. Because of permission problems, some files have been
overwritten while others have not.

Solution. Check the permissions of the files located in the $FGLDIR directory
and re-install the update.

-6322 <version number> wrong version. Expecting <version number>.

Description. The resource files located in the $FGLDIR/etc directory have a bad
version number.

Solution. This problem often results from installing a new version of the
compiler over an old one. Reinstall the new version but take care that the user
doing this operation has the correct permission to overwrite the files in the
$FGLDIR directory.
Error Messages C-7

Runtime Errors
-6323 Cannot open factory profile <filename>.

Description. The $FGLDIR/etc/fglprofile file is missing or is unreadable.

Solution. Check the permission of the file. If the file is missing, reinstall the
compiler.

-6324 Cannot load customer profile <filename>.

Description. The configuration file defined by the FGLPROFILE environment
variable is missing or unreadable.

Solution. Check if the FGLPROFILE environment variable is correctly set and
if the file is readable by the current user.

-6325 Cannot load application resources <name>.

Description. The directory specified by the fglrun.default entry in
$FGLDIR/etc/fglprofile is missing or not readable for the current user.

Solution. Check if the entry fglrun.default is correctly set in
$FGLDIR/etc/fglprofile and if the directory specified is readable by the
current user.

-6305 Cannot open char table file. Check your fglprofile.

Description. This error occurs if the conversion file defined by the
gui.chartable entry, in the $FGLDIR/etc/fglprofilefile, is not readable by the
current user.

Solution. Check if the gui.chartable entry is correctly set and if the specified
file is readable by the current user.

-6327 Internal error in the runtime library file <name>.

Description. Something unpredictable occurs, generating an error.

Solution. Contact Informix Technical Support.

-6340 Cannot open file.

Description. You used the channel extension in your program. The statement
channel::open_file returns this error because the file that you want to open is
not in the specified directory.

Solution. Check your source and compile your source.
C-8 Informix Dynamic 4GL User Guide

Runtime Errors
-6341 Unsupported mode for 'open file'.

Description. You used the channel extension in your program. The file that
you want to open does not support the specified mode.

Solution. Check the permissions for the specified file or change the
channel::open_file statement.

-6342 Cannot open pipe.

Description. You used the channel extension in your program. The
channel::open_pipe statement has an error because the specified command
does not exist.

Solution. Check your system for the command and the source for the syntax
for the command argument.

-6343 Unsupported mode for 'open pipe'.

Description. You used the channel extension in your program. The file that
you want to open does not support the specified mode.

Solution. Check the permissions for the specified file or change the
channel::open_file statement.

-6344 Cannot write to unopened file or pipe.

Description. You used the channel extension in your program. You are trying
to write data on a handle that refers to an unopened pipe.

Solution. Check your syntax.

-6345 Channel write error.

Description. You used the channel extension in your program. You are trying
to write a handle that refers to a file or pipe for which you do not have the
proper syntax.

Solution. Check your syntax.

-6346 Cannot read from unopened file or pipe.

Description. You used the channel extension in your program. You are trying
to read data from a handle that refers to an unopened pipe.

Solution. Check your syntax.
Error Messages C-9

Runtime Errors
-6200 fglrun: Module <name>: The function <name> will be called as <name>.

Description. An incorrect number of parameters are used to call a 4GL
function.

Solution. Check your source code and recompile your application.

-6201 fglrun: Module <name>: Bad version: Recompile your sources.

Description. You have compiled your program with an old version. The new
P-code version of your program is not supported.

Solution. Compile all source files and form files again.

-6202 fglrun: File <name>: Bad magic number: Code cannot run with this P-code
computer.

Description.You have compiled your program with an old version. The new
P-code version of your program is not supported. You might also have a file
with the same name as the .42r. You used the fglrun 42r-Name without speci-
fying the extension.

Solution. To resolve this problem, call fglrun with the .42r extension or
recompile your application.

-6203 fglrun: Module <name>: The function <name> has already been defined in
module <name>.

Description. The specified function is defined for the second time in the appli-
cation. The second occurrence of the function is in the specified module.

Solution. Eliminate one of the two function definitions from your source code.

-6204 fglrun: Module <name>: Unknown P code.

Description. An unknown P-code instruction was found in the P-code
application.

Solution. Check that the version of the Dynamic 4GL package executing the P
code is the same as the one that compiled the application. It is also possible
that the P-code module has been corrupted. In this case you need to
recompile your application.

-6205 fglrun: INTERNAL ERROR: Alignment.

Description. This error is internal, which should not normally occur.
C-10 Informix Dynamic 4GL User Guide

Runtime Errors
Solution. Contact Informix Technical Support.

-6206 fglrun: The dynamic loader cannot open module '<name>'.

Description. The module is not in the current directory or in one of the direc-
tories specified that the environment variable FGLLDPATH specifies.

Solution. Set the environment variable FGLLDPATH.

-6207 fglrun: The dynamic loaded module '<name>' does not contain the function
'<name>'.

Description. A 4GL module has been changed and recompiled, but the
different modules of the application have not been linked afterward.

Solution. Link the new modules together before you execute your application.

-6208 fglrun: Module '<name>': already loaded.

Description. A module is loaded twice at runtime. This can occur because one
module has been concatenated with another.

Solution. Recompile and relink your 4GL modules.

-6209 fglrun: Usage: fglrun [options] program.

Description. You have run the program fglrun without an argument.

Solution. This message is for informational purposes only.

-6018 Cannot access internal data file. Cannot continue this program. Check your
environment.

Description. When a client computer starts an application on the server, the
application stores data in the $FGLDIR/lock directory. The client should have
permission to create and delete files in this directory.

Solution. Either change the permissions of the $FGLDIR/lock directory or
connect to the server with a user name that has the correct permissions.

-6019 This demonstration version allows one user only.

Description. The demonstration version is designed to run with only one user.

Another user or another graphical daemon is currently active (4GL Server for
Windows or fgIX11d for the X11 environment).
Error Messages C-11

Runtime Errors
Solution. Wait until the user stops the current program or use the same
graphical daemon.

-6020 Installation: Cannot open <name>.

Description. Either the file $FGLDIR/lib/fgl2c.init or the file
$FGLDIR/lib/fgl.4gl cannot be read by the current user.

Solution. Check that the files exist and that they are readable for the current
user.

-6022 Demonstration time has expired. Run this program again.

Description. The runtime demonstration version is valid only for a few
minutes after you have started a program.

Solution. Restart the program.

-6023 C-code generation is not allowed with the demonstration program.

Description. Although Dynamic 4GL can compile in P code and in C code
(only for the UNIX version), C-code compilation is not available in the
demonstration version.

Solution. Compile your program in P code.

-6025 Demonstration time has expired. Contact your vendor.

Description. The demonstration version of Dynamic 4GL has a time limit of 30
days.

Solution. Either reinstall a new demonstration version or call your Dynamic
4GL distributor.

-6026 Bad link for runner demonstration. Retry or rebuild your runner.

Description. The runner is corrupted.

Solution. Relink your runner with the fglmkrun tool.

-6362 Unknown user name. Set the environment variable USERNAME or
LOGNAME.

Description. In order to start an application, the compiler should know which
user is executing the program. To do so, the compiler checks one of the two
environment variables USERNAME or LOGNAME.
C-12 Informix Dynamic 4GL User Guide

Runtime Errors
Solution. Depending on your system, one of these two variables is set by the
system. If not, add one of these to your environment.

-6328 Bad format of resource %s value %s : you must use next syntax
%s='VARNAME=value'.

Description. In the $FGLDIR/etc/fglprofile file, a fglrun.setenv.x or a
fglrun.defaultenv.x entry is incorrectly set.

Solution. Check your configuration file and correct the error.

-6329 Cannot put in process environment the next variable: '%s'

Description. A variable defined in the $FGLDIR/etc/fglprofile file by the entry
fglrun.setenv.x or fglrun.defaultenv.x because of a system problem cannot
be exported to the environment.

Solution. This error is caused by your system.

-6363 The INFORMIXDIR environment variable is not set. Check your
environment.

Description. The INFORMIXDIR environment variable is not set. This value is
required by the Dynamic 4GL compiler.

Solution. Set the environment variable to the name of the directory where the
Informix products are installed.

-6211 Link has failed.

Description. A problem occurred while linking the runner.

Solution. Check if all the variables have been set and retry.

-6326 Cannot open char map file '<name>'. Check your fglprofile.

Description. The specified char map file cannot be found or read.

Solution. Verify that the char map file is located in $FGLDIR/etc, and that the
right value is set in fglprofile (GUI.CHARTABLE entry).

-6360 This runner cannot execute any SQL.

Description. You are trying to run a program that contains some SQL state-
ments with the fglnodb runner (unable to access any database)

Solution. Use the full-featured runner.
Error Messages C-13

Runtime Errors
-6361 Dynamic SQL: type unknown: <type>.

Description. The specified type is unknown for the database.

Solution. The known types can be CHAR, VARCHAR, INTEGER, SMALLINT,
FLOAT, SMALLFLOAT, DECIMAL, MONEY, DAtE, DATETIME, INTERVAL.

-6604 (obs) The function 'fgl_dialog_<name>' can only be used within an INPUT
[ARRAY], DISPLAY ARRAY, or CONSTRUCT statement.

Description. You can only use this function on an "on key" statement (with an
INPUT [ARRAY], DISPLAY ARRAY or CONSTRUCT statement.)

Solution. In the rest of the program, use the other functions without the
fgl_dialog_ prefix.

-6610 The function '<name>' has already been called with a different number of
returned values.

Description. A function, not defined in the same module, has been called two
times with two different numbers of parameters.

Solution. This is a mistake in the source code. Check the function definition
and correct the wrong call.

-6611 Function '<name>': unexpected number of returned values.

Description. You are calling a function that returns a different number of
values than you expected at call.

Solution. Check your source.

-6612 Redeclaration of function '<name>'.

Description. A function has been defined twice in your program/module.

Solution. Check if you do not have two different functions with the same
name.

-6613 The library function '<name>' is not declared.

Description. You are calling a function that is not defined.

Solution. Check your sources.

-6614 The function '<name>' might return a different number of values.
C-14 Informix Dynamic 4GL User Guide

UNIX X11 Client Errors
Description. When you are using the -W return flag in compilation command,
this message warns you.

Solution. Only a warning.

-6615 The symbol '<name>' is unused.

Description. When you are using the -W unused flag in compilation
command, this message warns you that you have unused variables.

Solution. Only a warning.

UNIX X11 Client Errors
-6502 fglX11d (%d) could not be stopped.

Description. Problem of rights (process owner, ...).

Solution. Check if you are trying to shut down an application that does not
belong to you.

-6505 Communication between daemon and interface manager has broken down.

Description. The dedicated wish program is not available as it should be.

Solution. Check if the location of wish can be found in the PATH environment,
if it can be launched by the current user, and if it is the correct 4js version.
(You should check by running wish -v.)

License Errors
-6012 Cannot get license information. Check your environment and the license (run

"fglWrt -a see").

Description. You might have a different value between the FGLDIR
environment variable and the path to the Dynamic 4GL binary files defined
in the PATH environment variable.
Error Messages C-15

License Errors
Solution. Set the FGLDIR environment variable and then update your path
using the following commands:

Korn Shell: $ export PATH=$FGLDIR/bin:$PATH

C Shell: $ setenv PATH $FGLDIR/bin:$PATH

Microsoft DOS: C:\> set PATH=%FGLDIR%\bin;%PATH%

-6013 Time-limited version: time has expired.

Description. You have installed a demonstration version or a time-limited
version and the valid period has expired.

Solution. Call your Dynamic 4GL distributor to purchase Dynamic 4GL.

-6014 Your serial number is not valid for this version.

Description. You have installed a demonstration version or runtime version
and now you are using a final version or a development version.

Solution. Call your Dynamic 4GL distributor to purchase Dynamic 4GL.

-6015 Cannot get license information.

Description. It is not possible for the application to check the license validity.

Solution. Check the permissions for all the files located in the $FGLDIR
directory. You need to have read permissions on all the files and write
permissions on the $FGLDIR/lock directory.

-6016 Cannot get information for license (Error %s). Check your environment and
the license (run "fglWrt -a see").

Description. The application is unable to check the license validity.

Solution. You must have read permissions on all the files and write permis-
sions on the $FGLDIR/lock directory. It is also possible that the FGLDIR
variable is set incorrectly but that the $FGLDIR/bin directory is set correctly
in the PATH variable.

-6017 Users limit exceeded. Cannot run this program.

Description. There are too many users for this license. Each graphical daemon
uses one user. For example, if you have a license for 10 users, you can start 10
graphical daemons (4GL server for Windows or fgIX11d for UNIX). In ASCII
mode, each TTY running an application counts as one user.
C-16 Informix Dynamic 4GL User Guide

License Errors
Solution. Wait until a user stops a graphical daemon or call your Dynamic 4GL
distributor to purchase more licenses.

-6027 Cannot access license manager.

Check the following:

■ 'fgllic.server' entry in fglprofile

■ the license manager host

■ the license manager program

Description. You have not specified a value for the environment variable
fgllic.server in the $FGLDIR/etc/fglprofile file.

Solution. Check the fglprofile file for the entry point fgllic.server and specify
the name (in uppercase letters) of the computer that runs the Dynamic 4GL
License Server.

-6029 Unknown parameter '<name>' for checking.

Description. There is a wrong parameter on the command line of the fglWrt
tool.

Solution. Check your command-line parameters and retry the command.

-6030 The -J option requires the license number before the license key.

Description. You used the fglWrt program with the -J flag but you entered an
incorrect serial number or the license key before the serial number.

Solution. Specify a valid serial number.

-6031 Temporary license has expired.

Description. Your temporary runtime license has expired.

Solution. Call your Dynamic 4GL distributor to get a new license.

-6032 <name>: illegal option: <name>

Description. The specified program (<name>) has been called with a specified
parameter (<name>) that is not recognized by the program.

Solution. Run the program using the flag -h or -h to get help information
about it.
Error Messages C-17

License Errors
-6033 <name>: '<parameter>' option requires an argument.

Description. You cannot use this option of the fglWrt tool without a parameter.

Solution. Check your command line and try the command again.

-6034 Warning! This is a temporary license, installation number is '%s'.

Description. You have installed a temporary license of 30 days. You will have
to enter an installation key before the end of this period if you want to keep
on running the program.

Solution. This is only a warning message.

-6035 Cannot read in directory.

Description. The compiler cannot access the $FGLDIR/lock directory. The
current user must have read and write permissions in this directory.

Solution. Give the current user read and write permissions to the
$FGLDIR/lock directory.

-6041 Problem while searching license information.

Description. An error occurred during the license verification process.

Solution. Restart your program. If this does not solve the problem, check that
you have installed the license by typing the command fglWrt -a see to read
the current serial number. If you have not activated the license, run the
program fglWrt with the flag -l for UNIX systems or click License registration
for Windows environments.

-6042 Incorrect license information. Verify if a license is installed.

Description. You have attempted to run Dynamic 4GL without a valid license.

Solution. Check that you have installed the license by typing the command
fglWrt -a see to read the current serial number. If you have not activated the
license, run the program fglWrt with the flag -L for UNIX systems or click
License registration for Windows environments.

-6043 The testing period is finished. You must install a new license.

Description. The test time license of Dynamic 4GL has expired.

Solution. Call your Dynamic 4GL distributor to purchase a new license.
C-18 Informix Dynamic 4GL User Guide

License Errors
-6044 Incorrect information in license program. Verify if a license is installed or
check if your are on the right computer when a license manager is used.

Description. The compiler checks important software and hardware compo-
nents to validate the license. If any of these components change, the license is
no longer valid.

Solution. Restore the changed components or enter a new serial number.

(First verify that you have installed theDynamic 4GL license. For the
Dynamic 4GL License Server, check that you are on the right computer.)

-6045 Incorrect information in license program. Verify if a license is installed or
check if your are on the right computer when a license manager is used.

Description. The compiler checks important software and hardware compo-
nents to validate the license. If any of these components change, the license is
no longer valid.

Solution. Restore the changed components or enter a new serial number.

(First verify that you have installed theDynamic 4GL license. For the
Dynamic 4GL License Server, check that you are on the right computer.)

-6046 Cannot read license information. Check FGLDIR and your environment.

Description. Several environment variables must be set correctly.

Solution. Check your environment variables. Check your license by running
the program fglWrt -a see.

-6047 Incorrect information in license program. Verify if a license is installed.

Description. The compiler checks important software and hardware compo-
nents to validate the license. If any of these components change, the license is
no longer valid.

Solution. Restore the changed components or enter a new serial number.

(First verify that you have installed theDynamic 4GL license. For the
Dynamic 4GL License Server, check that you are on the right computer.)

-6048 Incorrect information in license program. Verify if a license is installed.
Error Messages C-19

License Errors
Description. The compiler checks important software and hardware compo-
nents to validate the license. If any of these components change, the license is
no longer valid.

Solution. Restore the changed components or enter a new serial number.

(First verify that you have installed the Dynamic 4GL license. For the
Dynamic 4GL License Server, check that you are on the right computer.)

-6049 This product is licensed for runtime only. No compilation is allowed.

Description. You have a runtime license installed with this package. You
cannot compile 4GL source code modules with this license.

Solution. If you want to compile 4GL source code, you need to purchase and
install a development license. Contact your Dynamic 4GL distributor.

-6050 Temporary license expired. Contact your vendor.

Description. A license with a time limit has been installed and the license has
expired.

Solution. Install a new license to activate the product. Contact your Dynamic
4GL distributor.

-6051 Temporary license expired. Contact your vendor.

Description. A license with a time limit has been installed and the license has
expired.

Solution. Install a new license to activate the product. Contact your Dynamic
4GL distributor.

-6052 Temporary license expired. Contact your vendor.

Description. A license with a time limit has been installed and the license has
expired.

Solution. Install a new license to activate the product. Contact your Dynamic
4GL distributor.

-6053 The FGLDIR environment variable has changed. FGLDIR must hold the
original installation path.

Description. The value of FGLDIR or the location of FGLDIR has been
changed.
C-20 Informix Dynamic 4GL User Guide

License Errors
Solution. Ask the person who installed the product for the location of the
original installation directory and then set the FGLDIR environment variable.

-6054 Cannot read a license file. Check FGLDIR and your environment. Verify if a
license is installed.

Description. The file that contains the license is not readable by the current
user.

Solution. Check that the FGLDIR environment variable is correctly set and
that the file $FGLDIR/etc/f4gl.sn is readable by the current user.

-6055 Cannot update a license file. Check FGLDIR and your environment. Verify if
a license is installed.

Description. The file that contains the license cannot be overwritten by the
current user.

Solution. Check if the FGLDIR environment variable is correctly set and if the
current user can write to the file $FGLDIR/etc/f4gl.sn.

-6056 Cannot write into a license file. Please check your rights.

Description. The file that contains the license cannot be overwritten by the
current user.

Solution. Check that the FGLDIR environment variable is correctly set and
that the current user can write to the file $FGLDIR/etc/f4gl.sn.

-6057 Cannot read a license file. Verify if a license is installed.

Description. The file that contains the license cannot be read by the current
user.

Solution. Check that the current user can read the file $FGLDIR/etc/f4gl.sn.
Also check that the FGLDIR environment variable is set correctly.

-6058 Incorrect license file format. Verify if a license is installed.

Description. The file that contains the license has been corrupted.

Solution. Reinstall the license. If you have a backup of the current installation
of Dynamic 4GL, restore the files located in the $FGLDIR/etc directory.

-6059 Incorrect license file format. Verify if a license is installed.

Description. The file that contains the license has been corrupted.
Error Messages C-21

License Errors
Solution. Reinstall the license. If you have a backup of the current installation
of Dynamic 4GL, restore the files located in the $FGLDIR/etc directory.

-6068 No license installed.

Description. There is no license installed for Dynamic 4GL.

Solution. Install a license. If a license is already installed, check that the
$FGLDIR environment variable is set correctly.

-6069 Cannot uninstall the license.

Description. There was a problem during the uninstall of the Dynamic 4GL
license.

Solution. Check if the FGLDIR environment variable is correctly set in your
environment and if the current user has permission to delete files in the
$FGLDIR/etc directory.

-6070 The fgllic.server entry must be set in fglprofile in order to reach the license
manager.

Description. You are using the remote license process and you have set the
value of fgllic.server, in $FGLDIR/etc/fglprofile, to localhost or to the
127.0.0.1 address.

Solution. You must use the real IP address of the computer even if it is the local
computer.

-6071 Cannot use directory '<name>'. Check FGLDIR and verify if access rights are
'drwxrwxrwx'.

Description. The compiler needs to make an operation in the specified
directory.

Solution. Change the permission of this directory.

-6072 Cannot create file in directory '%s'. Check FGLDIR and verify if access rights
are 'drwxrwxrwx'.

Description. The compiler needs to make an operation in the specified
directory.

Solution. Change the permission of this directory to 777 mode.
C-22 Informix Dynamic 4GL User Guide

License Errors
-6073 Cannot change the mode of a file in '%s'. Verify if access rights are
'drwxrwxrwx'.

Description. The compiler needs to make an operation in the specified
directory.

Solution. Change the permission of this directory to 777 mode.

-6074 '<name>' does not have 'rwxrwxrwx' rights or is not a directory. Check access
rights with "ls -ld $FGLDIR/lock" or execute "rm -r $FGLDIR/lock" if no users
are connected.

Description. The compiler needs to make an operation in the specified
directory.

Solution. Change the permission of this directory. The $FGLDIR/lock
directory contains only data needed at runtime by 4GL applications. When
the application is finished, you can remove this directory. If you delete this
directory while 4GL applications are running, the applications will be
stopped immediately.

-6075 Cannot read from directory '<name>'. Check FGLDIR and verify if access
rights are 'drwxrwxrwx'.

Description. The compiler needs to make an operation in the specified
directory.

Solution. Change the permission of this directory.

-6076 Bad lock tree. Please check your environment.

Description. There is a problem accessing the $FGLDIR/lock directory.

Solution. Check if the current user has sufficient permission to read and write
to the $FGLDIR/lock directory. Check also if the FGLDIR environment
variable is correctly set.

-6077 Bad lock tree. Check your environment.

Description. There is a problem accessing the $FGLDIR/lock directory.

Solution. Check that the current user has sufficient permission to read and
write to the $FGLDIR/lock directory. Check also that the FGLDIR
environment variable is correctly set.
Error Messages C-23

License Errors
-6078 SYSERROR. Cannot set socket to non-blocking mode. Check the system error
message and retry.

Description. When starting an application, a problem occurs with the initial-
ization of the socket of the Windows computer.

Solution. Restart the program. If the problem still exists, check that the TCP/IP
stack is correctly installed and configured on your computer.

-6079 Cannot get computer name or network IP address. Each network client must
have an IP address when using a license manager. FGLSERVER must hold the
IP address or the host name of the client (localhost is not allowed).

Description. You are using the remote license process and you have set the
value of fgllic.server, in $FGLDIR/etc/fglprofile, to localhost or to the
127.0.0.1 address.

Solution. You must use the real IP address of the computer even if it is the local
computer. This is also true for the value used with the FGLSERVER
environment variable.

-6080 Cannot get information from host %s. Check 'fgllic.server' entry in
fglprofile.

Description. The system cannot find the IP address of the specified host.

Solution. This is a configuration issue regarding your system. The command
ping should not reply as well. Correct your system configuration and then try
to execute your program.

-6081 Cannot reach host %s with ping: Check 'fgllic.server' entry in fglprofile.
Check your network configuration or increase 'fgllic.ping' value.

Description. The license server cannot ping the client computer, or it does not
get the response in the time limit specified by the fgllic.ping entry in the
$FGLDIR/etc/fglprofile file.

Solution. Try to manually ping the specified computer. If this works, try to
increase the value of the fgllic.ping entry in fglprofile. If the ping does not
respond, fix the system configuration problem and then try the program
again.

-6082 SYSERROR(%d)%s. Cannot set option TCP-NODELAY on socket. Check the
system error message and retry.
C-24 Informix Dynamic 4GL User Guide

License Errors
Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and retry the program.

-6083 SYSERROR(%d)%s: Cannot set option DONTLINGER on socket. Check the
system error message and retry.

Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and retry the program.

-6084 SYSERROR(%d)%s: Cannot set option LINGER on socket. Check the system
error message and retry.

Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and retry the program.

-6085 SYSERROR(%d)%s: Cannot connect to the license manager on host '%s'.
Check the following places:

■ fgllic.server entry in fglprofile

■ the license manager computer

■ the license manager service

Description. The application cannot check the license validity. To do so, it tries
to communicate with the Dynamic 4GL license service running on the
Windows NT computer where the product is installed.

Solution. Check that the Dynamic 4GL License Server is running on the
computer where the product is installed.

-6086 SYSERROR(%d)%s: Cannot send data to the license manager. Check the
system error message and retry.

Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and rerun the
program.

-6087 SYSERROR(%d)%s: Cannot receive data from license manager.

Check the system error message and retry.

Description. There is a problem with the socket of the Windows computer.
Error Messages C-25

License Errors
Solution. Check that the system is correctly configured and rerun the
program.

-6088 You are not allowed to connect for the following reason: %s

Description. The program cannot connect to the license server because of the
specified reason.

Solution. Try to fix the problem described and rerun your application.

-6090 SYSERROR(%d)%s: Cannot create a socket to start the license manager. Check
the system error message and retry.

Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and rerun the
program.

-6091 SYSERROR(%d)%s: Cannot bind socket for the license manager. Check the
system error message and retry.

Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and rerun the
program.

-6092 SYSERROR(%d)%s: Cannot listen socket for the license manager.

Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and rerun the
program.

-6093 SYSERROR(%d)%s: Cannot create a socket to search an active client.

Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and rerun the
program.

-6094 SYSERROR(%d)%s: This is a WSAStartup error. Check the system error
message and retry.

Description. There is a problem with the socket of the Windows computer.

Solution. Check that the system is correctly configured and rerun the
program.
C-26 Informix Dynamic 4GL User Guide

License Errors
-6095 Cannot start the license manager: %s

Description. License type incompatible. You are installing a version with an
unappropriated license (There is a license server and you are installing a
version of a classical one)

Solution. Reinstall and then contact your vendor.

-6096 Connection refused by the license server.

Description. There is problem connecting the client computer to the Windows
license server.

Solution. The problem is due to a configuration problem of the license server
computer. Check the configuration of the computers and of the products.

-6098 Stopping the license manager.

Description. The license server service is stopping.

Solution. This is an informational message.

-6099 SIGTERM received. Stopping the license Manager.

Description. The license server service is stopping.

Solution. This is an informational message.

-6107 User limit exceeded. Retry later.

Description. The maximum number of clients that can be run has been
reached (due to the license installed).

Solution. Retry later (when the number of current users has decreased) or
install a new license that allows more users.

-6108 Environment is incorrect.

Description. There is no local license or the environment is not set right.

Solution. Check your environment and your FGLDIR environment variable.

-6109 Cannot add session #%s.

Description. You do not have the rights to create the new session (in fact the
directory representing the new client).

Solution. Check the rights of the dedicated directories.
Error Messages C-27

License Errors
-6110 Cannot add program '%s' (pid=%d).

Description. You do not have the rights to create the new application for the

current user (in fact the file representing the new application).

Solution. Check the rights of the dedicated directories.

-6114 Cannot start program '%s'.

Description. When using fglWrt -u to find the number of users allowed on this
installation, the command "ps" used can be launched (only for UNIX).

Solution. Check the rights for ps.

-6148 The FGLDIR environment variable is not set.

Description. You are handling licenses but the FGLDIR environment variable
is not set.

Solution. Set the FGLDIR environment variable and retry.

-6149 Problem while installing license '%s'.

Description. A problem occurred while licensing.

Solution. Note the system-specific error number and contact Informix
Technical Support.

-6150 Temporary license not found for this version.

Description. While adding a definitive license key, the assumed temporary
license has not been found.

Solution. Re-install the license.

-6151 Wrong installation key.

Description. While adding a definitive license key, the found installation key
was not valid.

Solution. Re-install the license.

-6152 Problem during license installation.

Description. A problem occurred while installing the license. Could not write
information to the disk (either own files or system files).
C-28 Informix Dynamic 4GL User Guide

License Errors
Solution. Check the FGLDIR environment variable and the rights of the license
files (must be able to change them).

-6155 This license is too old to be valid.

Description. The temporary license time has expired.

Solution. You have to install a new license.

-6156 Too many temporary licenses.

Description. You installed a temporary license too many times.

Solution. Contact technical support to get a valid license.

-6158 Cannot store temporary information.

Description. A problem occurred while installing the license. Could not write
information to the disk (either own files or system files).

Solution. Check the FGLDIR environment variable and the rights of the license
files (you must be able to change them).

-6162 A valid license is already installed.

Description. You are trying to install a new license on an existing one.

Solution. You should not overwrite an existing license (or delete the existing
first).

-6168 Problem (b1) during license installation.

Description. The program cannot find out some system information (about the
program's owner).

Solution. Check your installation.

-6190 %s is already installed.

Description. A license server is already installed.

Solution. You should not try to overwrite an existing license server.

-6192 %s installation failed. Error %d.

Description. A problem occurred while installing the license server.

Solution. Check your environment.
Error Messages C-29

Licensing Problems (Windows NT)
-6193 %s is not installed.

Description. You are trying to uninstall the license manager which is not
installed.

-6195 Could not remove %s. Error %d.

Description. An error occurred while uninstalling the license manager.

Solution. Note the system error and contact your support center.

Licensing Problems (Windows NT)
-6701 Cannot access the service.

Description. The relevant rights to launch the license service are not allowing
it to be started.

Solution. Check your system configuration.

-6702 Internal error.

Description. Internal error of memory allocation.

Solution. None: Retry.

-6703 The service binary file could not be found.

Description. The path to the service is wrong.

Solution. Verify if it has been installed properly or is present in the
<FGLDIR>\bin.

-6704 The registry database is locked.

Description. You cannot access the registry database's information because it
is locked.

Solution. Check your system configuration.

-6705 The service depends on a service that does not exist or has been marked for
deletion.

Description. The license service cannot be launched because it depends on an
unexisting service (which has probably not been installed).
C-30 Informix Dynamic 4GL User Guide

Licensing Problems (Windows NT)
Solution. Look for the missing service.

-6706 The service depends on another service that has failed to start.

Description. The license service cannot be launched because it depends on
another service that cannot be run.

Solution. Retry.

-6707 A thread could not be created for the Win32 service.

Description. A thread could not be created while trying to run the license
server.

Solution. Retry.

-6708 The requested control code is not valid, or it is unacceptable to the service.

Description. While trying to shut down the license server, the service got a bad
instruction code.

Solution. Call technical support.

-6709 %s is not installed.

Description. You are trying to install the server and it failed, or you were
trying to uninstall it, but it could not be found.

Solution. Re-install the license server using the command 'fglserv -i'.

-6710 %s does not exist.

Description. The host you are using as a license server has no specific service
running to afford this.

Solution. Check if your fgllic.server entry in your fglprofile is right set.

-6712 %s is already running.

Description. You are trying to run a service that is already running.

Solution. Do not try to start it.

-6714 %s could not be logged on.

Description. The service cannot be started logging on as the specified user.
Error Messages C-31

Licensing Problems (Windows NT)
Solution. Check the service's properties (if the password has changed and so
on).

-6715 %s has been marked for deletion.

Description. The service has been marked for deletion so it cannot be used
anymore (will be deleted at next shutdown of the computer).

Solution. Re-install the license server.

-6716 %s did not respond to the start request in a timely fashion.

Description. One of the service's component could not be started and timed
out.

Solution. Call your technical support.

-6717 An error occurred while starting %s.

Description. An error occurred while starting the service.

Solution. Retry.

-6719 %s is not correctly installed.

Description. The license service is not correctly installed.

Solution. Re-install the license server.

-6720 %s was not opened with the necessary access.

Description. The sufficient rights to stop the server are not completed.

Solution. Check your environment and your right access.

-6721 %s cannot be stopped because other running services are dependent on it.

Description. The service cannot be stopped because another one needs it.

Solution. This error should not occur in any case for the moment: if it occurs,
there is a problem with your system.

-6722 The requested control code cannot be sent to %s because the state of %s is not
correct.

Description. The service is in a mode where it cannot be requested anymore
(for the moment).
C-32 Informix Dynamic 4GL User Guide

Licensing Problems (Windows NT)
Solution. Retry.

-6723 %s has not been started.

Description. You are trying to shut down a server that is not running.

Solution. Do not try to stop this service.

-6724 %s did not respond to the start request in a timely fashion.

Description. A service does not respond anymore.

Solution. Call the support team.

-6725 %s generated an error at stopped time.

Description. An error occurred during the shutdown time.

Solution. None: retry.

-6727 %s is not correctly installed.

Description.Description. The service does not exist or has not been installed
properly.

Solution. Install or re-install it.

-6729 %s not correctly started.

Description.Description. Installation process creation has failed.

Solution. Retry.

-6731 %s is not correctly uninstalled.

Description. Uninstallation process creation has failed.

Solution. Retry.

-6733 Unable to uninstall the service.

Description. Cannot uninstall the service.

Solution. Check if it is running if you have the rights.

-6750 Cannot open FGLDIR directory tree.

Description. The FGLDIR tree is missing or the FGLDIR variable is not set.
Error Messages C-33

fglmkrun Errors
Solution. Check your environment.

-6751 This license is available only on a Windows NT computer.

Description. You are trying to license with a WLS license type on a Win95 or a
Win98 station.

Solution. You have to use Windows NT to do that or to use a local license.

fglmkrun Errors
The following list shows fglmkrun error messages and solutions. These error
messages have no error message number.

■ -o flag must be followed by a name.

Description. You added the -o flag but did not include the name of the
runner to be created.

Solution. Add the name of the runner after the -o flag. For example,
$ fglmkrun -o myrun.

■ -d flag must be followed by a database interface type.

Description. You added the -d flag but did not include the database
interface type.

Solution. Add the database interface type after the -d flag. For exam-
ple $ fglmkrun -d ix914.

■ -sh flag must be followed by a program name.

Description. You added the -sh flag but did not include the shell name
to compile the P-code runner.

Solution. Add the shell name after the -sh flag. For example,
$ fglmkrun -sh esql.

■ -add flag must be followed by one argument. For example,
$fglmkrun-add-static.

Description. You added the -add flag but did not specify any flag to
send to the tool compiling the P-code runner.

Solution. Add the flag to send the tools compiling the P-code runner
after the -add flag.
C-34 Informix Dynamic 4GL User Guide

fglmkrun Errors
■ You should use "esql" or "c4gl" to create a runner when using -d
ixgen.

Description. When using the d-ixigen flag (i.e.: using the generic data-
base interface), you must use the "esql" or the "c4gl" script to create
the runner. You cannot use a standard C compiler to compile an
ESQL/C file.

Solution. Use the "esql" or the "c4gl" script to create the runner
($FGLDIR/src/esql_gen.ec).

■ Could not find database interface library for ixNNN.

Description. In this message, ixNNN is the parameter added after the
-d flag. This string is used to build the name of the libraries used to
build the runner. For example, when you use -d ix914, you use the
library named $FGLDIR/lib/libix914.a.

Solution. Enter a valid parameter name to access the appropriate
library. The only allowed parameters are ix410, ix501, ix711, ix914 or
ixgen.

■ XXX was not found or cannot be executed. Please check your
environment.

Description. The shell specified by the -sh flag (in this case XXX) can-
not be found in any of the directories specified by the PATH
environment variable, or it does not have execution permission.

Solution. Ensure that the PATH variable specifies the directory where
the shell is located, and that execution permissions are properly set.

■ Could not create runner XXX. Please check the following error
messages: <followed by other error messages>.

Description. The runner named XXX cannot be created. This could be
due to errors located in the environment, or it could be due to the
manner in which various products (ESQL, Dynamic 4GL, database
libraries, C compiler, and so forth) are installed.

Solution. Check the environment for possible errors. Then run the
fglmkrun command again using the -vb verbose flag to help identify
the problem.
Error Messages C-35

D
Appendix
Global Language Support
This appendix describes the Global Language Support (GLS)
feature available in Dynamic 4GL. The GLS feature allows
Informix database servers to handle different languages, cultural
conventions, and code sets.

This appendix describes the GLS features unique to Dynamic
4GL. You should be familiar with using GLS features and GLS
behaviors before using this appendix.

For Additional GLS Information
For additional information on using GLS, refer to the following
Informix guides:

■ GLS Programming Guide included with the Informix
Dynamic Server 7.2x (or greater) documentation.

■ Informix Guide to GLS Functionality included with the
Informix Dynamic Server 7.2x (or greater)
documentation.

Informix guides are available from the Informix Online
Documentation web site. To access this web site, use the
following URL:

http://www.informix.com/answers

All manuals listed on the Web site are stored in Adobe Acrobat
(.pdf) format.

Software Requirements
Software Requirements
You do not need 4GL installed to install Dynamic 4GL. However, the Client
SDK, Version2.x or later, must be installed.

The Client SDK installs the latest version of GLS. To use the GLS feature in
Dynamic 4GL, you must be using Informix GLS 3.07 (or later).

Displaying the GLS Version

You can display the version of GLS you currently have installed. To display
the GLS copyright message, type the following:

cat $INFORMIXDIR/etc/GLS-cr

The following text appears:

INFORMIX LIBGLS LIBRARY Version 3.08.UC1
Copyright (C) 1991-1998 Informix Software, Inc.

Downloading the Client SDK

The latest version of the Client SDK is available to download from the
Informix Web site at the following URL:

http://www.intraware.com/informix/

Supported Dynamic 4GL Clients
The only clients able to run Dynamic 4GL applications with the GLS feature
enabled are:

■ Windows Client

■ Text (ASCII) Client

■ Java Client

The following Dynamic 4GL clients do not support all languages:

■ X11 Client

■ HTML client
D-2 Informix Dynamic 4GL User Guide

Database Server Compatibility
Database Server Compatibility
This section describes the compatibility of Dynamic 4GL with Informix
database servers and other Informix products.

To use the GLS features of Dynamic 4GL, any database or connectivity
products must support the Informix GLS library, Version 3.07 or higher.
Figure D-1 summarizes the relationships of Informix Dynamic 4GL to the
UNIX-based Informix database servers that it supports.

Informix 7.2 and later GLS servers can store and retrieve data values that are
compliant with single-byte and multibyte locales. GLS functionality requires
the GLS version of INFORMIX-NET PC.

Dynamic 4GL is also compatible with Informix 5.x and 7.1 database servers,
which can be English or non-English based.

Dynamic 4GL also supports older (ALS-based) Informix servers. The
functionality differences are server-version based; applications might behave
differently when connected to different servers.

Figure D-1
Informix Database

Servers that
Dynamic 4GL

Supports

Dynamic 4GL

5.x English OnLine/SE

7.x English OnLine/SE
(with NLS)

5.x ALS OnLine/SE
(Taiwanese, Japanese,
Chinese, Korean)

Asian product behavior is
dependent on server version

English and NLS supported; English will not
cause problems if DB_LOCALE = en_us.8859-1

English will not cause problems if DB_LOCALE = en_us.8859-1

7.x GLS OnLine/SE

Complete compatibility
Global Language Support D-3

Restrictions on Dynamic 4GL GLS Capability
Restrictions on Dynamic 4GL GLS Capability
When using Dynamic 4GL, the following restrictions apply:

■ GLS features must be compiled to P code. Programs compiled to C
code cannot be localized using GLS.

■ GLS features in Dynamic 4GL are restricted to locales that use left-to-
right text processing.

■ Dynamic 4GL supports the entry, storage, and display of multibyte
characters in some East-Asian languages, such as Korean, Japanese,
and Chinese. However, these GLS features require a localized version
of Windows.

■ Dynamic 4GL provides limited support for the Thai language
through code set th_th.thai620, with Language Supplement TH 7.20,
for non-composite Thai characters. (Dynamic 4GL does not support
composite Thai characters.)

Creating Dynamic 4GL Applications with GLS Support
This section outlines the steps that are needed to create localized Dynamic
4GL applications:

1. Set up the development environment.

The system administration tools you use must belong to the database
server. You can use a UNIX terminal or a local terminal-emulation
program on Windows (provided that it supports the local code set).

2. Write the code.

Filenames (source and compiled) must contain only English
characters.

3. Compile and debug the code.

The Dynamic 4GL compiler can compile and link the components of
the application.

The fglmkmsg message compiler can compile non-English text
strings so that runtime messages can be displayed in the local lan-
guage. The user interface of this message compile is in English.

Any Windows help requires the Windows Help Compiler.
D-4 Informix Dynamic 4GL User Guide

Compiling a Dynamic 4GL Application with GLS
4. Deploy the code.

Deployment is relatively unrestricted. Applications that can be cre-
ated through the steps outlined here are localized applications for a
specific locale, and therefore are not internationalized. (That is, they
should not be used in another locale that requires, for example, a dif-
ferent code set from that of the message files.)

Compiling a Dynamic 4GL Application with GLS
Dynamic 4GL applications with GLS support can only be compiled to P code.

Important: You cannot compile an application to C code.

Creating a Runner

To create a GLS runner, add the -gls flag when running the fglmkrun script.
For example:

 fglmkrun -sh esql -gls

By default, the runner will be created in the $FGLDIR/bin/gls directory and
linked into the $FGLDIR/bin directory. You can specify a runner location and
name with the -o flag.

If the application is to run with Informix 7.3 database servers, set the
fglmkrun flag for Informix Esql/C 9.1x. The flag changes from -d ix730 to
-d ix914. Alternatively, you could set the Dynamic 4GL environment variable
FGLDBS to ix914.

If you do not specify the -gls flag when running the fglmkrun script, a runner
using only ASCII characters will be created in the $FGLDIR/bin/ascii
directory and linked into the $FGLDIR/bin directory. For example:

fglmkrun -sh c4gl

To create a GLS-aware P-code runner on Windows NT, place the following
entry in the Makefile:

USE_GLS = YES
Global Language Support D-5

Checking if a Runner with GLS Support was Created
Checking if a Runner with GLS Support was Created
You can check if a runner was created with GLS support using the -V flag. A
runner with GLS support enabled will display:

$ fglrun -V
INFORMIX Dynamic 4GL Runner Version 3.00
Built June 30 1999 15:36:04
(c) 1989-1998 Four J's Development Tools
Language support library: GLS (INFORMIX-ESQL Version 9.16.UC2)
Database front end : INFORMIX-ESQL VERSION 9.14(a)

A runner without GLS support enabled and using only ASCII characters will
display:

$ fglrun -V
INFORMIX Dynamic 4GL Runner Version 3.00
Built June 30 1999 15:36:04
(c) 1989-1998 Four J's Development Tools
Language support library: standard ASCII (ISO8859-1)
Database front end : INFORMIX-ESQL VERSION 9.14

Localizing Dynamic 4GL Messages
Dynamic 4GL displays messages differently, depending on whether the
message was generated by SQL functions or not.

Messages Generated by SQL functions

For messages generated by internal calls to SQL functions, these messages are
retrieved using the Informix rgetmsg () function.

Dynamic 4GL Messages

Dynamic 4GL messages are stored in the
$FGLDIR/<lang_state>/<codeset-id>/all.msg file. In addition, Dynamic 4GL
creates a subset of messages files that are similar to i4gcl, c4gl, and form4gl
Informix messages and stores them in $FGLDIR. Dynamic 4GL uses these
message files during compilation.
D-6 Informix Dynamic 4GL User Guide

Using the Forms Compiler
fglprofile Localized Messages

Message strings in the fglprofile are replaced by a link to a message number.
If no message is found that corresponds to this number, the help message
label appears. You can replace the message label with any string.

Before:

key.help.text=”help”

After:

key.help.text= [msg -6900 “help”]

Using the Forms Compiler
The fglform forms compiler can process form specifications that include non-
English characters that are valid in the client locale. It can also produce
compiled forms that can display characters from the client locale, and that
can accept such characters in input from the user.

Using the Message Compiler
The fglmkmsg message compiler can compile messages that include
non-English characters, so that runtime messages can be in the local
language. The ERR_GET() function can display locale-dependent characters.

Fully-Supported Windows Toolkit (WTK) Character Sets
Windows Toolkit (WTK) is the Dynamic 4GL software that customizes the
Tcl/Tk for GUIs on Windows. The following WTK character sets can be used
with Dynamic 4GL and are fully supported by Microsoft.
Global Language Support D-7

Fully-Supported Windows Toolkit (WTK) Character Sets
Important: You should refer to the Dynamic 4GL Release Notes for any changes to
the supported WTK character sets.

Code Set Character Set Name or Alias
Microsoft Code
Page ID

1252
west-europe
cp1252

ANSI_CHARSET, Western,
Windows-1252

1252

1250
east-europe
cp1250

EE_CHARSET, Central european
(Windows), Windows-1250, x-cp1250

1250

1251
pc-slavic
cp1251

RUSSIAN_CHARSET, Cyrillic
(Windows), Windows-1251, x-cp1251

1251

1253
pc-greek
cp1253

GREEK_CHARSET, Greek (Windows),
Windows-1253

1253

1254
pc-latin5
pc-turkish
cp1254

TURKISH_CHARSET, Turkish
(Windows), Windows-1254

1254

1255
pc-hebrew
cp1255

HEBREW_CHARSET, Hebrew
Windows-1255

1255

1256
pc-arabic
cp1256

ARABIC_CHARSET, Arabic
Windows-1256

1256

1257
pc-baltic
cp1257

BALTIC_CHARSET, Baltic Windows-1257 1257

1258 VIETNAMESE_CHARSET, Vietnamese,
Windows-1258

1258

874 THAI_CHARSET, Thai, Windows-874 874

 (1 of 2)
D-8 Informix Dynamic 4GL User Guide

Fully-Supported Windows Toolkit (WTK) Character Sets
1361 JOHAB_CHARSET, Johab (Korean),
Windows-1361

1361

932
CCSID932
sjis-s
pc-sjis
cp932

SHIFTJIS_CHARSET, Japanese,
Windows-932, shift_jis,x-sjis, ms_Kanji,
cs, ShiftJIS IBM CCSID 932 Mixed
including 1880 UDC

 932

ksc
KS5601
cp949
57356

HANGUL_CHARSET, Korean, Korean
(Wansung) KS C-5601-1987 Windows-949

949

gb
GB2312-80
cp936

GB2312_CHARSET, Windows-936
Chinese (People's Republic of China,
Singapore), Simplified Chinese Microsoft
Windows

936

big5
Big-5
cp950
57352

CHINESEBIG5_CHARSET, Windows-
950, Traditional Chinese MS Windows
Code Page 950, Chinese (Hong Kong SAR,
China Taiwan)

950

Code Set Character Set Name or Alias
Microsoft Code
Page ID

 (2 of 2)
Global Language Support D-9

Fully-Supported Windows Toolkit (WTK) Character Sets
Partially Supported WTK Character Sets
The following table lists character sets that Dynamic 4GL can use, but for
which Windows does not provide support for all characters. If you use any
of these character sets, you will find some characters are missing when you
type the complete character set. When possible, use the fully supported WTK
character sets.

Code Set Character Set Name or Alias
Microsoft Code
Page ID

819
ASCII
C
8859-1
Latin-1

IBM CCSID 819, C locale, POSIX Locale
iso-8859-1, us-ascii, standard ascii, latin1
ibm819, iso-ir-6,ANSI_X3

1252

912
8859-2
Latin-2

iso-8859-1,iso-ir-101, ibm912, IBM CCSID
912

1250

813
8859-7
Latin-Greek

 IBM CCSID 813, iso-8859-7, ibm813 1253

916
8859-8
Latin-Hebrew

IBM CCSID 916, ibm916, iso-8859-8 1255

920
8859-9
Latin-5

IBM CCSID 920, ibm920, iso-8859-9 1254

1089
8859-6
Latin-Arabic
iso-ir-127
ASMO-708

IBM CCSID 1089, iso-8859-6, iso-ir-127 1256

57390
8859-13
Latin-Baltic

 iso-8859-13 1257
D-10 Informix Dynamic 4GL User Guide

Fully-Supported Windows Toolkit (WTK) Character Sets
Setting the CLIENT_LOCALE Variable
Use the values in the table to correctly set the CLIENT_LOCALE variable. The
variable is created using the following syntax.

CLIENT_LOCALE= language_territory.codeSet

For example:

fr_ca.1252

The Code Set column in the following table lists the synonyms that can be
used in the CLIENT_LOCALE variable.

Important: For more information on setting the CLIENT_LOCALE variable, refer to
the “Informix Guide to GLS Functionality.”

Default Character Set

The Latin reference to Windows code pages denotes what is also called the
Roman alphabet in U.S. English. In any locale, Dynamic 4GL requires at least
one font that supports the code set if the application needs to produce output
to the screen or to a report.

The default value on a UNIX computer is iso8859-1. This character set is not
fully supported. You should set CLIENT_LOCALE to en_us.1252 if you want
complete support of this character set.

For example:

CLIENT_LOCALE=en_us.1252
unset DB_LOCALE
(default value)

CLIENT_LOCALE=cs_cz.cp1250
DB_LOCALE=cs_cz.8859-2

CLIENT_LOCALE=ja_jp.sjis-s
DB_LOCALE=ja_jp.ujis

CLIENT_LOCALE=ko_kr.ksc
DB_LOCALE=ko_kr.ksc

CLIENT_LOCALE=ja_jp.sjis-s
DB_LOCALE=ja_jp.unicode
Global Language Support D-11

Internationalization and Localization
Internationalization and Localization
The terms internationalization and localization are near antonyms, but they
both describe activities that are critical for applications that will be deployed
in more than one locale. The first term, internationalization, refers to the work
of analysts and developers who must design and write code that is gener-
alized for different cultural contexts. The second term, localization, refers to
the work of developers and translators who must adapt an internationalized
application to the specific needs of a given linguistic or cultural setting.

Internationalization is the process of making software applications easily
adaptable to different cultural and language environments.

Internationalization features support non-ASCII characters in character string
values, and adaptable number, time, and currency formats. International-
ization also implies the ability to switch runtime environments from one
language to another. Internationalization removes the need to recompile
source code for a specific natural language or cultural environment.

A fully-internationalized application can run in different cultural
environments with minimal adjustments, in some instances by simply
exchanging language-specific files and setting up the operating environment.

An internationalized application must support the use of extended ASCII
code sets. The default environment for 4GL is based on the ASCII code set of
128 characters. Each of these encoded values (or code points) requires seven
bits of a byte to store each of the values 0 through 127 , representing the
letters, digits, punctuation, and other logical characters of ASCII. Because
each ASCII character can be stored within a single byte, ASCII is called a single-
byte character set. All other character sets that 4GL can support must include
ASCII as a subset.

An internationalized application should, at a minimum, be 8-bit clean.
A program, GUI, or operating system is referred to as “8-bit clean” if it allows
the high-order bit of a character code to take on a value of 1. 4GL applications
are 8-bit clean, and therefore support the use of extended ASCII character sets,
such as Windows code pages or ISO 8859 character sets.

Localization is the process of translating and adapting an internationalized
product to specific language and cultural environments.
D-12 Informix Dynamic 4GL User Guide

Global Language Support Terms
Localization usually involves setting the appropriate number, time, and
currency formats for the intended country, as well as creating a translation of
the runtime user interface (including help and error messages, prompts,
menus, and reports).

You can reduce the cost and effort of localization if the application is
designed with international requirements in mind. This release of 4GL
supports localization in several areas:

■ Entry, display, and editing of non-English characters

■ References to SQL identifiers containing non-English characters

■ Collation of strings containing non-English symbols

■ Non-English formats for number, currency, and time values

For basic GLS concepts and for details of how Informix database servers and
the INFORMIX-ESQL/C product implement GLS, see the Informix Guide to GLS
Functionality.

Global Language Support Terms
Global language support (GLS) refers to the set of features that makes it possible
to develop user interfaces and other parts of an application so that they can
use non-Roman alphabets, diacritical marks, and so on. In order to under-
stand the requirements of GLS, you will need to become familiar with the
terms described in this section.

Code Sets and Logical Characters
For a given language, the code set specifies a one-to-one correspondence
between each logical element (called a logical character, or a code point) of the
character set, and the bit patterns that uniquely encode that character. In U.S.
English, for example, the ASCII characters constitute a code set.
Global Language Support D-13

Collation Order
Code sets are based on logical characters, independent of the font that a
display device uses to represent a given character. The size or font in which
4GL displays a given character is determined by factors independent of the
code set. (But if you select, for example, a font that includes no representation
of the Chinese character for star, then only whitespace will be displayed for
that character until you specify a font that supports it.)

Collation Order
Collation order is the sequence in which character strings are sorted. Database
servers can support collation in either code-set order (the sequence of code
points) or localized order (some other predefined sequence). See the Informix
Guide to GLS Functionality for details of localized collation.

4GL supports only code-set order. The database server, rather than 4GL, must
do the sorting if you require localized collation of data values in NCHAR or
NVARCHAR columns of the database. (You can write collation functions, but
4GL relational operators always use the code-set order.)

Single-Byte and Multibyte Characters
Most alphabet-based languages, such as English, Greek, and Tagalog, require
no more than the 256 different code points that a single byte can represent.
This simplifies aspects of processing character data in those languages;
for example, the number of bytes of storage that an ASCII character string
requires has a linear relationship to the number of characters in the string.

In non-alphabetic languages, however, the number of different characters can
be much greater than 256. Languages like Chinese, Japanese, and Korean
include thousands of different characters, and typically require more than
one byte to store a given logical character. Characters that occupy two or
more bytes of storage are called multibyte characters.
D-14 Informix Dynamic 4GL User Guide

Locales
Locales
For 4GL (and for Informix database servers and connectivity products), a
locale is a set of files that specify the linguistic and cultural conventions that
the user expects to see when the application runs. A locale can specify these:

■ The name of the code set

■ The collation order for character-string data

■ Culture-specific display formats for other data types

■ The correspondence between uppercase and lowercase letters

■ Determination of which characters are printable and which are
nonprintable

The Informix Guide to GLS Functionality provides details of formats for
number, currency, and time values. If no locale is specified, then default
values are for U.S. English, which is the en_us.8859-1 locale on UNIX systems,
or Windows code page 1252. For deployment, 4GL is also delivered with the
locale en_us.1252@dict, which corresponds to that Windows code page.

The locale en_us.1252@dict allows you to compile and run programs that
contain non-English characters from any single-byte language, but the
default data formats are those of U.S. English. Alternatively, you can use the
Setnet32 utility to specify some nondefault locale, such as one of those listed
in “Locales Supported by 4GL” on page D-20.

Global Language Support
GLS is a set of features that enable you to create localized applications for
languages other than U.S. English and for country-specific cultural issues,
including the localized representation of dates, currency values, and
numbers. 4GL supports the entry, retrieval, and display of multibyte
characters in some East Asian languages, such as Japanese and Chinese.
Global Language Support D-15

Native Language Support
The following GLS- enabled built-in functions or operators have been
modified since the 6.0 release of 4GL to provide support for non-English
locales. Some can accept multibyte characters as arguments or operands, or
can return values that include multibyte characters.

■ CLIPPED operator

■ DOWNSHIFT()

■ FGL_GETENV()

■ FGL_KEYVAL()

■ LENGTH()

■ Substring ([]) operator

■ UPSHIFT()

■ WORDWRAP operator

See the INFORMIX-4GL Reference Manual for the syntax and semantics of these
built-in functions and operators. (Besides these, certain other built-in
functions and operators of 4GL can also process or return multibyte values.)

Native Language Support
The GLS capability of 4GL is not a logical superset of native language support
(NLS) as that term is used by Informix. An Informix NLS server is one that
recognizes the NCHAR and NVARCHAR data types. Such servers can commu-
nicate with client applications in single-byte locales.

4GL supports Informix NLS servers at the implicit level of compliance,
through INFORMIX-NET and through INFORMIX-ESQL/C. The 4GL language
does not recognize NCHAR or NVARCHAR data types, but such values from
the database server are automatically converted to CHAR and VARCHAR
values, and 4GL can use CHAR and VARCHAR values to update NCHAR and
NVARCHAR columns, provided that an operating-system locale exists in the
GLS directory for the NLS locale.
D-16 Informix Dynamic 4GL User Guide

Non-GLS Components of This Release
The DBNLS value that is set on the client system running 4GL is passed to the
database server, but any LC_COLLATE value from the client is ignored.
(Collation by the 4GL application is based on the code-set order, not on
LC_COLLATE, but the database server can perform localized collation of
NCHAR or NVARCHAR column values, based on the LC_COLLATE setting.)

The COLLCHAR environment variable is not required to enable NLS; on the
contrary, 4GL requires that COLLCHAR not be set. If you have COLLCHAR set
to 1, you must reset it to NULL. For more information about DBNLS,
COLLCHAR, and LC_COLLATE, see the Informix Guide to GLS Functionality.

Non-GLS Components of This Release
Not all components of 4GL provide GLS. This section identifies components
of 4GL that support only single-byte locales that do not require bidirectional
text processing.

The absence of GLS does not imply that these features are unavailable in
non-English locales. It does imply, however, a restriction to locales that
require only single-byte code sets and left-to-right text processing.

Installation in Non-English Locales
This section identifies the general requirements for installation of 4GL in non-
English locales. Because non-English refers to all locales other than
en_us.8859-1 (for UNIX) or en_us.1252@dict (for Windows), most locales of
the English-speaking world are non-English in this context, as are the locales
of most of the rest of the world.

The directory structure of Informix GLS products is shown in Figure D-2.
Global Language Support D-17

Installation in Non-English Locales
Figure D-2
Directory Structure

of GLS Products
*.cv

cv9
*.cvo

*.cm
cm3

*.cmo

*.lc
en_us

*.lcolc11

gls

etc (similar to msg subdirectory)

forms (similar to msg subdirectory)

*.iemen_us
msg

0333

release (similar to msg subdirectory)

sql
demo

*en_us 0333

$INFORMIXDIR
D-18 Informix Dynamic 4GL User Guide

Requirements for International Application Development
Requirements for International Application Development
The following requirements must be met to develop a 4GL application that is
fully adapted to a language or to a country:

■ The targeted hardware platform and operating system need
to support the desired language and country combination.

The operating-system environment on both the client platform and
the server platform might require special versions to support the
entry, manipulation, and display of non-English data.

■ The Informix products need to support the language. Informix
products are 8-bit clean and allow entry, manipulation, and display
of most European and Asian language data.

■ Error messages generated by 4GL and the database server should be
available in a localized version, so that only local languages appear
in the runtime environment.

■ All parts of the user interface created by the application developer
(such as menus, prompts, error messages, and help) should be trans-
lated into the target language.

In many cases, the last three of these four requirements can be met by using
an Informix language supplement. Your Informix sales representative can
advise you regarding the availability of language supplements, of localized
versions of Windows, and of database servers that are compatible with 4GL.

Language Supplements
Use of 4GL with some non-English languages might require an Informix
language supplement specific to the conventions of the country or language.
Language supplements are currently required, for example, for Informix
database servers to support each of the following East Asian languages.

Country or Language Informix Language Supplement

People’s Republic of China Language Supplement ZHCN 7.20

Taiwanese Language Supplement ZHTW 7.20
Global Language Support D-19

Locales Supported by 4GL
Language supplements for these East Asian languages include locale files,
translated message files, and translated menu files. Localized versions of 4GL
for East Asian locales (for example, Japanese 4GL) will include the relevant
files. See the release notes for additional information.

A corresponding International Language Supplement includes locale files
and code-set conversion files for most European languages. Because most of
these files are included with the INFORMIX-NET (7.2) connectivity software
that is provided with 4GL, this supplement need not be purchased by 4GL
customers unless the required locale is not included with 4GL.

When the Informix database server is installed in locales based on non-
English European languages, both the default (English) database server and
the International Language Supplement must be installed.

When 4GL is installed, the locale files must also be installed. Contact your
Informix sales office for information regarding current support for specific
locales.

Locales Supported by 4GL
A locale is the part of the processing environment that defines conventions for
a given language or culture, such as formatting time and money values, and
classifying, converting, and collating characters. The Informix GLS locale
definition is similar to the X/Open CAE Specification.

Japanese Language Supplement JA 7.20

Korean Language Supplement KO 7.20

Thai (simplified) Language Supplement TH 7.20

Country or Language Informix Language Supplement
D-20 Informix Dynamic 4GL User Guide

Locales Supported by 4GL
Code sets that WTK 4GL supports include those listed in the following table.

Here Latin in reference to Windows code pages 1250 and 1252 denotes what
is also called the Roman alphabet in U.S. English. In any locale, 4GL requires
at least one font that supports the code set, if the application needs to produce
output to the screen or to a report.

4GL provides limited support for the Thai language through code set
th_th.thai620, with Language Supplement TH 7.20, for non-composite Thai
characters. (4GL does not support composite Thai characters.)

Client Locales and Server Locales

The locale of the system on which the 4GL application is running is called the
client locale. For an application that is partitioned through 4GL, this refers to
the locale of the application server and of the display server. The locale of the
database server is called the server locale. “Handling Code-Set Conversion”
on page D-49 describes special procedures that might be required if the client
locale and the server locale are not identical.

Country or Language Windows Code Page

People’s Republic of China 936 (also known as GB 2312-80)

Taiwanese 950 (also known as Big-5)

Japanese 932 (also known as Shift-JIS)

Korean 949 (also known as KSC 5601)

Eastern European (Latin) 1250

Eastern European (Cyrillic) 1251

Western European (Latin) 1252

Greek 1253

Turkish 1254
Global Language Support D-21

Locales Supported by 4GL
Setting Environment Variables for Specific Locales

4GL requires that environment variables be set correctly on UNIX systems
that support the database server or 4GL applications that support application
server and display server partitions. For details about setting environment
variables on UNIX systems for GLS, see the Informix Guide to GLS Functionality.
See also “Configuring the Language Environment” on page D-37 of for
additional information about setting environment variables.

To set environment variables on Windows 95 systems, you set most
environment variables in the Windows 95 or NT 4.0 registry by using the
Setnet32 utility.

See the Informix Guide to GLS Functionality for an example of non-English
locale files.
D-22 Informix Dynamic 4GL User Guide

Requirements for All Locales
Requirements for All Locales
This section outlines the steps that are needed to create localized 4GL
applications:

1. Set up the development environment.

The system administration tools that you use must belong to the
database server. You can use a UNIX terminal or a local terminal-
emulation program on Windows (provided that it supports the local
code set).

2. Write the code.

Filenames (source and compiled) must contain only English
characters.

3. Compile and debug the code.

The 4GL compiler can compile and link the components of the
application.

The Message Compiler can compile non-English text, so that runtime
messages can be displayed in the local language. The user interface
of the Message Compiler is in English.

Any Windows help requires the Windows Help Compiler.

The INFORMIX-4GL Interactive Debugger is not GLS-enabled.
(The Dynamic 4GL Debugger has sufficient GLS capability to display
non-English characters from the client locale.)

4. Deploy the code.

Deployment is relatively unrestricted. Applications that can be cre-
ated through the steps outlined here are localized applications for a
specific locale, and therefore are not internationalized. (That is, they
should not be used in another locale that requires, for example, a dif-
ferent code set from that of the message files.)
Global Language Support D-23

The 4GL Compilers
The 4GL Compilers
The compilers have limited GLS capability, as the sections that follow
describe.

The 4GL Character Set

4GL keywords, identifiers, delimiters, and special symbols in source code are
restricted to the same ASCII characters described in the INFORMIX-4GL
Reference Manual. Additional printable characters from the client locale,
however, are valid within source code files in the following contexts only:

■ Within comments

■ Within 4GL identifiers

■ Within certain SQL identifiers (as listed in the table in “SQL and 4GL
Identifiers” on page D-25)

■ Within expressions where character-string literals are valid

In non-English locales, 4GL identifiers can include non-ASCII characters in
identifiers if those characters are defined in the code set of the locale that
CLIENT_LOCALE specifies. In multibyte East Asian locales that support
languages whose written form is not alphabet-based, a 4GL identifier need
not begin with a letter, but the storage length cannot exceed 50 bytes. (A
Chinese identifier, for example, that contains 50 logical characters would
exceed this limit if any logical character in the identifier required more than
one byte of storage.)

Non-English characters in other contexts, or characters that the client locale
does not support, will generally cause compilation errors.

At runtime, the user can enter, edit, and display valid characters from the
code set of the client locale. Whether a given character from a non-English
code set is printable or nonprintable depends on the client locale.
D-24 Informix Dynamic 4GL User Guide

The 4GL Compilers
Values that include non-English characters can be passed between a 4GL
application and the database server, if the client and server systems have the
same locale. If the locales are different, data can still be transferred between
the 4GL client and the database server, provided that the client locale includes
appropriate code-set conversion tables. See “Configuring the Language
Environment” on page D-37 or the Informix Guide to GLS Functionality for
information about establishing a locale and about code-set conversion
between locales. See also “Handling Code-Set Conversion” on page D-49.

Non-English Characters

The following features of the 4GL compiler are GLS-enabled to support non-
English characters that are valid in the client locale:

■ Names of identifiers

■ Values of CHAR and VARCHAR variables and formal arguments

■ Characters within TEXT blobs

■ Message text, quoted strings, and values returned by functions

■ Text within comments, forms, menus, and output from reports

Named 4GL program entities include variables, functions, cursors, formal
arguments, labels, reports, and prepared objects. 4GL has a limit of 50 bytes
on the lengths of these names, but C compiler or linker restrictions might
impose lower limits.

SQL and 4GL Identifiers

SQL identifiers are the names of database entities, such as table and column
names, indexes, and constraints. The first character must be an alphabetic
character, as defined by the locale, or an underscore (= ASCII 95) symbol. You
can use alphanumeric characters and underscores (_) for the rest of the SQL
identifier. Most SQL identifiers can be up to 18 bytes in length. What
characters are valid in SQL identifiers depends on the locale of the database
server. Neither single-byte nor multibyte whitespace characters can appear
in SQL identifiers.

For INFORMIX-SE database servers, whether non-English characters are
permitted in the names of databases, tables, or log files depends on whether
the operating system permits such characters in filenames. ♦

SE
Global Language Support D-25

The 4GL Compilers
The user interface of the 4GL compiler is in English. If edit fields contain
multibyte characters, there is no checking, and the results might be unpre-
dictable. Embedded SQL statements can include valid non-English identifiers
for some database entities.The following tables summarize the instances
where non-English characters are valid as identifiers within 4GL source code
modules. The first table lists SQL identifiers.

The following 4GL identifiers allow non-English characters.

SQL Identifier Allow Non-English Characters?

Column name Yes

Constraint name Yes

Database name Yes (Operating System limitations on INFORMIX-SE)

Index name Yes

Log filename Yes (Operating System limitations on INFORMIX-SE)

Stored procedure name Yes

Synonym Yes

Table name Yes (Operating System limitations on INFORMIX-SE)

View name Yes

4GL Identifier Allow Non-English Characters?

Variable name Yes

Cursor name Yes

Filename or pathname No

Formal argument name Yes

Function or report name Yes

Prepared statement name Yes

Statement label Yes
D-26 Informix Dynamic 4GL User Guide

The 4GL Compilers
Input and output filenames for the 4GL compiler cannot be localized. Only
ASCII characters are valid in input and output pathnames or filenames. (If
support for uppercase ASCII letters is required, specify en_us.1252@dict as
the locale at compile time. Uppercase letters are not defined in en_us.1252.)

Collation Sequence

The collation (sorting) sequence in 4GL statements is implied by the code-set
order in the files that define the client locale. (Any collating that is specified
by the LC_COLLATE value of the client locale is ignored.) Collation in SQL
operations (where the database server uses its own collation sequence)
depends on the data type and on the server locale (which can specify a
localized order of collation). It is possible for the 4GL application and the
database server to use a different collating sequence, or for a 4GL application
to connect to two or more servers that use different collating sequences.
The collation sequence can affect the value of Boolean expressions that use
relational operators and the sorted order of rows in queries and in reports.

Locale Restrictions

The compiler requires the en_us.0333 locale. It accepts as input any source
file containing data values in the format of the client locale. The compiler can
generate binaries or P-code files with client-locale text strings. The runtime
locale of a 4GL program must be the same as its compile-time locale.

As a convenience to the developer, 4GL adds a field in P-code header files to
specify the locale in which the files were compiled but does not compare
these locales.

The Forms Compiler

The fglform forms compiler can process form specifications that include non-
English characters that are valid in the client locale. It can also produce
compiled forms that can display characters from the client locale, and that
can accept such characters in input from the user.

The Message Compiler

The mkmessage message compiler has a user interface in English but can
compile non-English text into runtime messages in the local language.
Global Language Support D-27

East Asian Language Support
On-Line Help

Help for 4GL applications in non-English locales requires the native
Windows Help facility.

East Asian Language Support
4GL can create applications for Asian languages that use multibyte code sets.
This support is only available when 4GL applications are developed and run
under a multibyte version of Microsoft Windows or UNIX.

4GL supports the following features in multibyte locales:

■ Menu items, identifiers, and text labels in the native language

■ Features to avoid the creation of partial characters

■ Non-English data within 4GL applications

■ Cultural conventions, including the representation of date, time,
currency, numeric values, and localized collation

■ Kinsoku processing for Japanese language text with WORDWRAP

■ Icon modification without changing the 4GL application binary

■ Text geometry that adjusts automatically to meet localization needs

■ Application comparisons that adopt the comparison rules and
collating sequence that the locale defines implicitly (SQL comparison
and collation depend on the database server.)

This version of 4GL does not support composite characters, such as are
required in code sets that support the Thai language.

4GL comments and character string values can include multibyte characters
that are supported by the client locale in contexts like these:

■ Character expressions and multiple-value character expressions

■ Literal values within quoted strings

■ Variables, formal arguments, and returned values of CHAR,
VARCHAR, and TEXT data types
D-28 Informix Dynamic 4GL User Guide

East Asian Language Support
Multibyte characters can also appear in 4GL source code (or in user-defined
query criteria) that specifies the SQL identifier of any of the database objects
listed in the table on “SQL and 4GL Identifiers” on page D-25. 4GL does not,
however, support multibyte characters as currency symbols or as separators
in display formats that DBDATE or DBFORMAT specifies.

Logical Characters

Within a single-byte locale, every character of data within character-string
values requires only a single byte of memory storage, and a single character
position for display by a character-mode device.

This simple one-to-one relationship in character-string operations between
data characters, display width, and storage requirements does not exist in
East Asian locales that support multibyte characters. In such locales, a single
logical character might correspond to a single byte or to two or more bytes.
In such locales, it becomes necessary to distinguish among the logical
characters within a string, the display width that the corresponding glyph
occupies in a display or in report output, and the number of bytes of memory
storage that must be allocated to hold the string.

In locales that support multibyte characters, some built-in functions and
operators that process string values operate on logical characters, rather than
on bytes. For code sets that use multibyte characters, this modifies the byte-
based behavior of several features in 4GL. A single logical character can
occupy one or more character positions in a screen display or in output of a
report, and requires at least one byte of storage, and possibly more than one.

Declaring the CHAR or VARCHAR data types of variables, formal arguments,
and returned values is byte-based. Runtime processing of some character
strings, however, is done on a logical character basis in multibyte locales.

Partial Characters

The most important motivation for distinguishing between logical characters
and their component bytes is the need to avoid partial characters. These are
fragments of multibyte characters. Entering partial characters into the
database implies corruption of the database, and risks malfunction of the
database server.
Global Language Support D-29

East Asian Language Support
Partial characters are created when a multibyte character is truncated or split
up in such a manner that the original sequence of bytes is not retained. Partial
characters can be created during operations like the following:

■ Substring operations

■ INSERT and UPDATE operations of SQL

■ Word wrapping in reports and screen displays

■ Buffer to buffer copy

4GL does not allow partial characters and handles them as follows:

■ Replaces truncated multibyte characters by single-byte whitespaces

■ Wraps words in a way that ensures that no partial characters are
created in reports and screen displays

■ Performs code-set conversion in a way that ensures that no partial
characters are created

For example, suppose that the following SELECT statement of SQL:

SELECT col1[3,5] FROM tab1

retrieved three data values from col1 (where col1 is a CHAR, NCHAR,
NVARCHAR, or VARCHAR column); here the first line is not a data value but
indicates the alignment of bytes within the substrings:

AA2BB2AA becomes " s1Bs1"
ABA2C2AA becomes "A 2s1"
A2B2CABC becomes "B 2C"

Here the notation s1 denotes a single-byte whitespace. Any uppercase letter
followed by a superscript (2) means an East Asian character with multibyte
storage width; for simplicity, this example assumes a 2-byte storage
requirement for the multibyte characters. In the first example, the A2 would
become a partial character in the substring, so it is replaced by a single-byte
whitespace. In the same substring, the B2 would lose its trailing byte, so a
similar replacement takes place.
D-30 Informix Dynamic 4GL User Guide

General Guidelines
General Guidelines
This section lists the issues that you need to consider when writing and
translating applications.

Internationalization Guidelines
To make a 4GL application world-ready, keep the following guidelines
in mind:

■ Do not assume that application users are English-speaking or will
accept any pre-set business rules or formats.

■ Use code libraries wherever possible. This centralizes common code
and makes changes and maintenance easier when developing for
international markets.

Specific programming areas that might require special attention (and
that are treated in detail in the Informix Guide to GLS Functionality)
include:

❑ character-string display, entry, storage, retrieval, and processing.

❑ formats for literal date, time, currency, and numeric values.

❑ code-set conversion between client and server.

■ In all windows that will appear in more than one language, consider
differences in word length among languages when you are
designing the window and its graphical objects.

■ Allow space for the expansion of user message strings. Brief English
strings such as Popup can double in size as a result of translation. On
average, you can expect a 30 percent increase in the size of messages.

■ When designing windows, remember that names, addresses, dates,
times, and telephone numbers have different formats in different
countries.

■ When possible, use picture buttons instead of buttons with titles.

■ Consider that measurement systems can also differ. Most countries
outside the U.S. express quantities using the metric system. For
example, liters, centimeters, and kilometers instead of quarts, inches,
and miles.
Global Language Support D-31

Internationalization Guidelines
■ Make sure that all screens, menus, user messages, reports, help
facilities, and application parameters (such as holidays, bank years,
formulas) that were developed with Informix tools for the appli-
cation are either table-driven or are controlled by text files or
environment variables that are easy to modify. This issue is
discussed later in this appendix.

■ Avoid embedding any messages, prompts, or elements of the user
interface into the source code of the program. Ideally, all user
interface elements can be switched dynamically by referencing a
different set of translated files.

■ Consider different keyboard layouts. A character (such as “/”) that
is easily accessible on an ASCII keyboard might require several
keystrokes in the standard keyboard of some other country.

■ Consider creating a configuration utility to deal with different font
types. Some applications that will be deployed in several different
countries might need to load different fonts to accommodate specific
national characters.

Because these fonts are often supplied by third parties, you might not
be able to predict the font names when you develop the application.
In this case, you can use the default font names and provide a config-
uration utility that allows the user to specify the font name before
running the application.

■ Consider differences in paper size when designing reports. Most
countries outside the U.S. use the ISO Standard A4 paper size, which
is 21 by 29.7 centimeters, slightly longer and narrower than the
American standard 8.5 by 11 inches.

■ Avoid fragmentation of messages or potentially ambiguous key
or command words. Avoid determining variable portions of a
message at runtime; for example, the differing syntax of other
languages can make the order in which your functions return param-
eters an obstacle to correct translation.

■ Wherever possible, avoid abbreviations, acronyms, contractions,
and slang.

■ Place comments around any string pertaining to the user interface
to facilitate localization.
D-32 Informix Dynamic 4GL User Guide

Localization Guidelines
■ Use localized error messages and help files. The message compiler
utility that is provided with 4GL enables you to create customized
help files as well as a localized version of the 4GL runtime message
file. (This is the 4glusr.msg file in the msg directory.) International-
izing messages is further discussed in “Localizing Prompts and
Messages” on page D-47.

■ You can handle reports (which are 4GL programs) in the same way
that you internationalize the rest of your 4GL source code.

If your database server and ESQL/C API are Version 6.0 or later, you might be
able to take advantage of Native Language Support (NLS) functionality, even
though 4GL provides only implicit support for NLS. For more information,
see the Informix Guide to SQL: Reference.

Localization Guidelines
Localization refers to the actual process of adapting the application to the
cultural environment of end users. This process often involves translation of
the user interface and user documentation and can be quite time consuming
and costly. Here are some guidelines to follow:

■ Consult the native operating-system internationalization guide.

Most platforms provide documentation on internationalization. This
material might help you determine which date, time, and money for-
mats are appropriate for the target language and culture.

For more information about internationalization and Windows, see
“International Applications” in the Microsoft Windows Programmer’s
For more information about internationalizing Informix products in
the UNIX environment, see the Informix Guide to SQL: Reference.

For information about the terms and constructs of GLS technology,
see the Informix Guide to GLS Functionality.

■ Make sure the targeted hardware, operating-system environments,
and Informix product versions of your applications can support the
desired language and culture.
Global Language Support D-33

Localization Guidelines
■ Find out if the runtime environment of 4GL and of the database
server is currently available in the target language.

For example, the 4GL runtime environment (and the Informix
Dynamic Server administrator’s environment) is usually
translated into several languages, including French, German,
Spanish, Russian, and Japanese.

■ Keep a glossary of all strings and keywords in a database or text file.

This glossary will make it easier to see which messages are dupli-
cated throughout the source code. The glossary will also increase the
consistency of terms and language in the user interface throughout
the application. Once the glossary is created for one language, it can
be used for product updates and additional localizations.

■ Create a mechanism that allows a glossary to drive the definition
of the user interface.

This can be particularly useful if you expect to localize the
application often. A translator can edit the glossary without having
to understand the source code of the application. Your tool can then
create the user interface from the translated glossary, and the trans-
lator can focus on making cosmetic enhancements to the translation
(such as positioning the messages appropriately) and correcting
minor errors.

■ Consider creating a checklist of those user interface elements in your
application that should be externalized into text files from the source
code, and therefore from the compiled portion of the program. These
text files can then be modified even after the program is compiled.
Externalize the following elements:

❑ Menus

❑ Forms

❑ Messages

❑ Labels

❑ Help (.msg) text

❑ Numeric, date, time, and money formats

❑ Report names
D-34 Informix Dynamic 4GL User Guide

Localization Methodology Overview
■ Consider retaining a professional translator for some or all of this
process.

A faulty translation is costly. You can spend a great deal of time and
money correcting errors in your localized product. And if you do not
correct the problems, your users will be dissatisfied with your
application.

Localization Methodology Overview
This section lists the elements of an application and indicates some ways in
which each can be localized. This overview, while not comprehensive, illus-
trates how to approach a project of this nature. The rest of this appendix
expands on the approaches listed here.

For many of the application elements discussed in this section, the two
methods of localization are the table-based approach and the file-based
approach. The table-based approach involves obtaining translation infor-
mation from a database using SQL queries. The file-based approach involves
retrieving the values of the variables from a text file.

Application Help and Error Messages

The following methods are available for localizing application help and error
messages.

Table-Based Localization of Messages

To use this method, you need to verify the availability of tables. It often also
requires the hard coding of defaults in case the database cannot be accessed.

File-Based Localization of Messages

This method uses the fglmkmessage message compiler utility to create help
and error message files. For more information, see “Localizing Prompts and
Messages” on page D-47.
Global Language Support D-35

Localization Methodology Overview
Date, Time, and Currency Formats

To localize formats for dates, time, and money values, set the Informix
environment variables DBDATE, DBFORMAT, and DBMONEY. Formatting
conventions of some East Asian locales require that the GL_DATE or
GL_DATETIME environment variable be set.

Informix System Error Messages

The following methods are available for localizing Informix system messages
and error messages.

Informix Translation

Informix provides error message translation for a variety of languages. You
can use the DBLANG environment variable to point to a message directory
containing translated messages. Contact your local Informix sales office for a
list of available language translations.

Customized System Error Message Files

If no Informix translation of the error messages is available, and if the source
code of error message files is delivered with the product, you can localize the
message source files using the fglmkmessage utility. For more information,
see “Localizing Prompts and Messages” on page D-47.

Code-Set Conversion

The method available depends on whether you are using UNIX or Windows:

■ For UNIX systems, set the DBAPICODE environment variable.

■ For Windows systems that use INFORMIX-NET with Dynamic 4GL,
set the CLIENT_LOCALE and DB_LOCALE entries in the registry.

For details, see “Handling Code-Set Conversion” on page D-49.
D-36 Informix Dynamic 4GL User Guide

Configuring the Language Environment
Configuring the Language Environment
Environment settings that affect the language environment exist both in
your 4GL environment and in your system environment. Using the GLS
features of 4GL with Informix database servers involves several compatibility
issues:

■ The English servers create English databases with ASCII data.
For these, the 4GL program must access the servers with DB_LOCALE
set to en_us.8859-1.

■ The 5.x ALS versions of Informix servers can use variables such
as DBCODESET and DBCSOVERRIDE as substitutes for DB_LOCALE
and DBCONNECT, respectively. These environment variables need to
be set by using Setnet32.

■ The 5.x ALS versions use DBASCIIBC to emulate the 4.x ASCII
servers. This environment variable should be set in the registry, if
such behavior is desired.

■ The SERVER_LOCALE environment variable is set on the database
server, not on the 4GL client. This specifies the locale that the
database server uses to read or write operating-system files. If this is
not set, the default is U.S. English (en_us.8859-1).

If no setting is specified, the 4GL application uses an English locale. But the
registry sets everything to the local language, code set, or locale, so the
practical default is for applications to use the local locale.

The non-internationalized portions of the product are initialized with
the default (U.S. English) locale. That is, both CLIENT_LOCALE (en_us.1252)
and DB_LOCALE (en_us.8859-1) are set to English. This initialization is
necessary because many common functions are shared between the interna-
tionalized and non-internationalized components.

Important: Except for DBFORMAT, all the environment variables that are described
in the sections that follow apply to Informix database servers.
Global Language Support D-37

Environment Variables That Support GLS
Consider also the following points:

■ The application cannot support connections to different databases
with different locales concurrently; for example, in extended joins.

■ The environment variables discussed here deal with the
environment DB_LOCALE that is passed to the server.

■ CLIENT_LOCALE cannot be changed dynamically during execution.

■ The previous point has one exception: the CLIENT_LOCALE can
always be set to English (because English is a subset of all locales).

When connecting to a GLS, NLS, or ALS (Asian Language Support) database,
the DB_LOCALE code set should match the DB_LOCALE code set of the
database. Otherwise, data corruption can occur, because no validation of
code-set compatibility is performed by the server. An ALS server can refuse
the connection when the code sets do not match, but an NLS server cannot.

Environment Variables That Support GLS
This section examines the environment variables that support the GLS
capabilities of 4GL, including the following 4GL environment variables:

■ DBDATE defines date display formats.

■ DBMONEY defines monetary display formats.

■ DBFORMAT defines numeric and monetary display formats and has
more options than DBMONEY.

INFORMIX-4GL also supports the following GLS environment variables:

■ DB_LOCALE is the locale of the database to which the application
is connected.

■ CLIENT_LOCALE is the locale of the system that is executing the 4GL
application.

■ DBLANG points to the directory for language-specific message files
that an Informix product uses, such as Informix error messages.

■ GL_DATE defines date displays, including East Asian formats.

■ GL_DATETIME defines date and time displays, including East Asian
formats.

■ SERVER_LOCALE is the locale of the database server for file I/O.
D-38 Informix Dynamic 4GL User Guide

Environment Variables That Support GLS
4GL does not use DB_LOCALE directly; this variable, as well as DBLANG, is
used by the GLS version of INFORMIX-NET PC. See the Informix Guide to GLS
Functionality for details on how DBLANG, DB_LOCALE, GL_DATE, and
GL_DATETIME are set.

Compatibility Issues

In order for 4GL to work with older Informix database servers (such
as 5.x ALS), it is necessary for these environment variables to be set in the
Windows registry. This is done by the GLS version of INFORMIX-NET PC.
When the 4GL application accesses an NLS database, appropriate NLS
environment variables must be set in the registry if NLS functionality is
desired.

DBAPICODE

This environment variable specifies the name of a mapping file for peripheral
devices (for example, a keyboard, a display terminal, or a printer) whose
character set is different from that of the database server.

DB_LOCALE

This environment variable specifies the locale of the database to which the
4GL component or application is connected. The only Informix databases that
currently support non-English languages exist in UNIX. Therefore, when the
locales are non-English, the localized 4GL application can only connect to
these databases. The format for setting DB_LOCALE is DB_LOCALE=<locale >.

Consider also the following points regarding DB_LOCALE:

■ If the application uses this value to access a database, the locale of
that database must match the value specified in DB_LOCALE. If it
does not match, the database connection might be refused (unless
DBCSOVERRIDE is set to 1), depending on the server version.

■ If a database is created, then this new database has the value
specified by DB_LOCALE.

■ If DB_LOCALE is invalid, either because of wrong formatting or
specifying a locale that does not exist, then an error is issued.
Global Language Support D-39

Environment Variables That Support GLS
■ If the code set implied by DB_LOCALE cannot be converted to what
CLIENT_LOCALE implies, or vice versa, an error is issued.

■ If DB_LOCALE is not specified, there is no default value; in this case,
the GLS version of INFORMIX-NET PC behaves as if code-set
conversion were not needed.

CLIENT_LOCALE

This environment variable specifies the locale of the (input) source code and
the compiled code (to be generated). This is also the locale of the error files (if
any) and the intermediate files. The format of CLIENT_LOCALE is the same
as that of DB_LOCALE:

■ The characters that reach the user interface (the non-ASCII
characters) must be in the CLIENT_LOCALE.

■ If DB_LOCALE is invalid, either because of wrong formatting
or specifying a locale that does not exist, an error is issued.

■ The DB_LOCALE and CLIENT_LOCALE settings need to be
compatible, meaning there should be proper code-set conversion
tables between them. Otherwise, an error is issued.

■ If CLIENT_LOCALE is not set in the Windows client, then Windows
code page 1252 is the default.

■ The CLIENT_LOCALE must match the environment of the user
interface (meaning that it should be compatible with the local
version of Windows). Otherwise, an error is issued.

■ Collation by the 4GL application follows the code-set order
of CLIENT_LOCALE, except in SQL statements (where the database
server uses its own collation sequence). Any LC_COLLATE
specification is ignored.
D-40 Informix Dynamic 4GL User Guide

Environment Variables That Support GLS
DBLANG

The value of DBLANG is used to complete the pathname to the directories
that contain the required message, help, and demo files. The format of
DBLANG is the same as that of DB_LOCALE:

■ If DBLANG is not set, the value defaults to that of CLIENT_LOCALE.

■ If DBLANG is invalid, then en_us.1252 is the default value. This case
occurs if DBLANG is improperly formatted, or if it points to a locale
that does not exist, or points to a locale that is incompatible with the
version of Windows on which the 4GL application is running.

See also the description of DBLANG in the Informix Guide to GLS Functionality.

DBDATE

The DBDATE environment variable has been modified to support era-based
dates (Japanese and Taiwanese). The days of the week and months of the year
(in local form) are stored in the locale files. If this environment variable is set,
it might override other means of specifying date formats.

DBMONEY

This environment variable has been modified to accept multibyte currency
symbols. 4GL components that read the value of DBMONEY (or DBFORMAT)
must be able to correctly process multibyte characters as currency symbols.
If DBMONEY is set, its value might override other means of specifying
currency formats.

DBFORMAT

This environment variable has been modified to accept multibyte currency
symbols. Unlike the version of DBFORMAT for English products, display of
the decimal point is optional, rather than mandatory, in 4GL. (Use of a comma
as the DBFORMAT decimal separator can produce errors or unpredictable
results in SQL statements in which 4GL variables are expanded to number
values that are formatted with commas as the decimal separator.)

If DBFORMAT is set, its value can override other means of specifying number
or monetary formats.
Global Language Support D-41

Environment Variables That Support GLS
The glfiles utility is described in the Informix Guide to GLS Functionality and is
packaged with INFORMIX-4GL and INFORMIX-SQL products. This utility
allows you to generate lists of the following files:

■ GLS locales available in the system

■ Informix code-set conversion files available

■ Informix code-set files available

Default Values of GLS Environment Settings

Default values assumed by INFORMIX-4GL and INFORMIX-SQL products
(which differ from those of ALS environments) are described in this section.

The following table shows the values assumed by 4GL when you define only
some of the required values of locales.

(A value of ja-jp.ujis is assumed in the following example. CL means
CLIENT_LOCALE, and DL means DB_LOCALE.)

If you do not set the DBLANG environment variable, it is set to the value of
CLIENT_LOCALE.

User Defined Values in Product

CL Defined CL Value DL Defined DL Value CL Value DL Value

No -- No -- en_us.8859 en_us.8859

Yes ja_jp.ujis No -- ja_jp.ujis ja_jp.ujis

Yes ja_jp.ujis Yes ja_jp.ujis ja_jp.ujis ja_jp.ujis

No -- Yes ja_jp.ujis en_us.8859 ja_jp.ujis
D-42 Informix Dynamic 4GL User Guide

System Environment Variables
System Environment Variables
This section describes how you can query your system environment for
language and country variables.

Windows Environment Variables

To access the language environment variable programmatically, you can use
any of the following three approaches:

■ Read the Language value directly from the [ResourceLocale]

section of the registry, specifically:
HKEY_CURRENT_USER\Control Panel\Desktop\ResourceLocale

This has a 32-bit numeric value called a locale ID, part of which
defines the language that is used in the Windows user interface. The
numbers are defined in WINNT.H.

For example, if ResourceLocale is set to 00000409 , the 10 lower-
order bits 0000001001 (= hexadecimal 009) represent English, the
constant LANG_ENGLISH in the winnt.h file. If the value is set to
00000401 , then 001 represents Arabic (LANG_ARABIC).

(You can also read and modify this setting through the Control
Panel.)

On Windows 95 and Windows NT, use the registry, rather than .ini
files, but .ini files are supported (so that you can install pre-Windows
95 programs).
Global Language Support D-43

System Environment Variables
Some of the language codes that Windows currently supports are
listed in the following table.

For more information about internationalization and Windows, see
the Microsoft Windows Programmer’s Reference.

■ Create an environment variable for the language, either with
Setnet32, or, for applications that are deployed on Windows 3.1
systems, in the informix.ini file (by adding the variable and its
setting to the [ENVIRONMENT] section). Then use the built-in
FGL_GETENV() function of 4GL in your code. For example:

VARIABLE langStr CHAR(30)
LET langStr = FGL_GETENV("LANGUAGE")

Your program can now test for the value that you specified in
LANGUAGE.

Code Language Code Language

ENU U.S. English FRC Canadian French

ENG U.K. English ISL Icelandic

DAN Danish ITA Italian

DEU German NLD Dutch

ESN Modern Spanish NOR Norwegian

ESP Castilian Spanish PTG Portuguese

FIN Finnish SVE Swedish

FRA French
D-44 Informix Dynamic 4GL User Guide

System Environment Variables
You can develop your own language variable scheme. For example,
the following three-letter codes identify a unique subdirectory that
contains the translation files appropriate for a particular language.

You might want to use this or the next approach if you need to con-
trol your application’s language setting separately from that of other
Windows applications.

■ Create your own .ini file and language variable, and have your
application read this file for the language setting.

UNIX Environment Variables

The value of the X/Open-defined LANG environment variable specifies the
language environment. No standardization of LANG locale values exists
between systems. Exact values to specify for locale variables are specific to
the system and also depend on which language supplements have been
installed on the system.

To query programmatically for the language value, you can use the built-in
FGL_GETENV() function:

FGL_GETENV("LANG")

For more information about the LANG environment variable, see the Informix
Guide to SQL: Reference.

Subdirectory Language

eng English

fre French

ita Italian

spa Spanish
Global Language Support D-45

Storing Localization Information
Storing Localization Information
This section describes the process involved in creating an application so that
it can read translation information, either from a file or from a database table
at runtime.

File-Based Localization
You can store the translations of localized information in disk files and access
them at runtime as needed.

You can use subdirectories to store language-sensitive files so they can easily
be switched to create a new runtime environment. In the following example,
the filename is composed by reading the value of an environment variable
(created by the programmer) that specifies a Windows language
subdirectory:

LET file001 = FGL_GETENV("LANGUAGE"), "\", "trans.4gl"
Evaluates to "eng\trans.4gl" if LANGUAGE is "eng"
Program reads the eng directory for copy of translation
#
Evaluates to "ger\trans.4gl" if LANGUAGE is "ger"
Program reads the ger directory for copy of translation
#
LET tranfile = file001

In the preceding example, change the backslash character to a forward slash
(/) for UNIX systems.

Table-Based Localization
Localization information can also be stored in database tables. This infor-
mation can be used when you initialize or run the application to change the
value of variables that define titles, menus, and other language or culturally
sensitive elements of the user interface. An advantage of the table-based
approach is that it is highly portable between systems.
D-46 Informix Dynamic 4GL User Guide

Localizing Prompts and Messages
Setting Up a Table

The following example shows one way that you might set up a table to store
menu options:

CREATE TABLE menu_elements(
option_language CHAR(3), #language ID code
option_number SMALLINT, # identifying number
option_text CHAR(80), # text
option_maxlen SMALLINT # maximum length of string
)

CREATE UNIQUE INDEX ix_menustr
ON menu_elements(option_language, option_number)

Example data:

ENG150Cold Beer
FRE150Bière froide
GER150Kaltes Bier
SPA150Cerveza fría
ENG151Iced Tea
...

Querying the Table

A global variable that contains the language code of the application, which
corresponds to the value in the option_language column, can be set in the
program at startup. Each time a character string is needed, a function could
be called that uses the language and identifying number to query the table
for the appropriate string:

LET lang = getLanguage()# returns 3 letter code
from option_language column

Localizing Prompts and Messages
You can use the 4GL message compiler utility to create translated message
files for your application messages. These files, which usually have the
extension .iem, run very quickly.

Creating Message Files

For any natural language, follow these steps to create new language versions
of the messages and prompts that your application displays.
Global Language Support D-47

Localizing Prompts and Messages
To create new message files

1. With a text editor that can create flat files, create a source (.msg) file
with the following format:

.message-number
message-text
.message-number
message-text

For example:
.1000
Part not found.
.1001
Price must be a positive number.
.1002
Invalid format for phone number.

To translate the messages into another language, simply provide
translated versions for the message text, using the same format.

2. At the system prompt, invoke the message compiler utility
(fglmkmesssage) by using a command of the following form:

fglmkmsg filename

The message compiler processes filename.msg and produces a com-
piled message file that has the name filename.iem.

If you want the compiled message file to have a different name from
the source file, specify that filename as a final argument:

fglmkmsg source output

The syntax of fglmkmesssage is described in the INFORMIX-4GL
Reference Manual.

Accessing Message Files

To access the compiled message file from your application, you can write
a function that reads the messages from the compiled (.iem) file. For
example, the calling program includes logic to display a Part not found

message in the following pseudo-code:

DEFINE OK, noPart INT, msg CHAR(79)
LET noPart = 1000

To supply new versions of the messages, you need only provide a new source
file and compile it with the message compiler. The function calls in your
application remain the same.
D-48 Informix Dynamic 4GL User Guide

Handling Code-Set Conversion
Handling Code-Set Conversion
The process of converting characters at the locale of the 4GL application to
characters at the locale of the database server (or vice versa) is called code-set
conversion. If your application needs to run on computers that encode
different character sets, it might be necessary to enable code-set conversion.
This section provides some background and details.

Code-set conversion is performed by INFORMIX-NET; no explicit code-set
conversion is done by 4GL. Figure D-3 shows the relationship between 4GL,
INFORMIX-NET, and the database.

The code sets in the CLIENT_LOCALE can differ from those in DB_LOCALE.
In the CLIENT_LOCALE, the code sets (which are specified in locales) use
code points that are pre-defined by Microsoft standards. The code sets that
are used in the DB_LOCALE tend to use characters that are based on UNIX
conventions, if the application is designed to access legacy data.

Code-set conversion is done by way of a code-set conversion file. Files for
code-set conversion between CLIENT_LOCALE and DB_LOCALE need to be
present on the client. For conversion to take place, conversion files need to be
present in the %informixdir%\gls\cv directory.

For details of converting between client and server code sets, see the sections
that follow. For more information, see the Informix Guide to GLS Functionality.

Figure D-3
Processes and Their Locales

INFORMIX-4GL INFORMIX-NET Database

CLIENT_LOCALE DB_LOCALE
Global Language Support D-49

What Is Code-Set Conversion?
What Is Code-Set Conversion?
Different operating systems sometimes encode the same characters in
different ways. For example, the character a-circumflex is encoded:

■ in Windows code page 1252 as hexadecimal 0xE2.

■ in IBM CCSID 437 as hexadecimal 0x83.

If the encoding for a-circumflex on the Windows system is sent unchanged
to the IBM system, it will be printed as the Greek character gamma. This
happens because, on the IBM system, gamma is encoded as 0xE2.

This means character data strings that are passed between two computers
using different character set encodings must be converted between the two
different encodings. Otherwise, character data originating from one
computer will not be correctly displayed or processed on the other computer.

This appendix uses the term code set in the same way the Windows
documentation uses the terms character set and code page.

Converting character data from one encoding schema to another is called
code-set conversion. If a code-set conversion is required from computer A to
computer B, it is also required from computer B to computer A. You must
explicitly enable code-set conversion; no conversion is done by default.
(Details on enabling code-set conversion appear in “Enabling Code-Set
Conversion for Windows” on page D-53.)

What Code-Set Conversion Is Not

Code-set conversion is not a semantic translation; that is, it does not convert
words between different languages. For example, it does not convert
between English yes and French oui. It only ensures that each character is
processed and printed the same, regardless of how the characters are
encoded.

Code-set conversion does not create a character in the target code set if the
character exists only in the source code set. For example, if the character
a-circumflex is being passed to a computer whose code set does not contain an
a-circumflex character, the target computer will never be able to exactly
process or print the a-circumflex character. This situation is described in more
detail in “Mismatch Processing” on page D-52.
D-50 Informix Dynamic 4GL User Guide

What Data Values Are Converted
When You Do Not Need Code-Set Conversion

You do not need code-set conversion in any of the following situations:

■ The client and the server are on the same computer.

■ The code set of your client and of all the databases to which you are
connecting are the same.

■ The subset of characters that you will be sending between the client
and the server are encoded identically. For example, if you are
sending only English characters between a client and a server, and
each English character has the same encoding on both computers, no
code-set conversion is required. In this case, the non-English
characters can have different encodings.

■ The character-string data values are passed from the client to the
server for storage only and are neither processed nor printed by the
server. For example, no code-set conversion is required if a client:

❑ passes character-string data to the server.

❑ does not process or print the data on the server computer.

❑ retrieves the same data for processing or printing on computers
that use the same code set as the client that populated the
database.

Sorting data by using the ORDER BY statement or retrieving data by using
a LIKE or MATCHES clause, however, will probably produce erroneous
results if the data strings are not converted before they are stored.

What Data Values Are Converted
If you enable code-set conversion, data values are converted by INFORMIX-
NET PC from the 4GL client to the database server, and from the server to the
client. The CHAR, VARCHAR, and TEXT blob data types are converted, as are
column names, table names, database names, and SQL command text.
Global Language Support D-51

Mismatch Processing
Mismatch Processing
If both code sets encode exactly the same characters, then mismatch handling
is unnecessary. If the source code set contains any characters that are not
contained in the target code set, however, the conversion must define how
the mismatched characters are to be mapped to the target code set.

Four ways code-set conversions handle mismatch processing are as follows:

■ Round-trip conversion. This maps each mismatched character
in the source code set to a unique character in the target code set.
On the return, the original character is mapped back to itself. This
guarantees that a two-way conversion will result in no loss of infor-
mation; however, data converted in only one direction might confuse
the processing or printing on the target computer.

■ Substitution conversion. This maps all mismatched characters in
the source code set to a single specific character in the target code set
that serves to highlight mismatched characters. This guarantees that
a one-way conversion will clearly show the mismatched characters;
however, a two-way conversion will result in information loss if
mismatched characters are transferred.

■ Graphical replacement conversion. This maps each mismatched
character in the source code set to a character in the target code set
that resembles the source character (this includes mapping one-
character ligatures to their two-character equivalents). This might
confuse printing on the target computer. Round-trip conversions
should contain as many graphical replacement conversions as
possible.

■ Substitution plus graphical replacement. This maps as many
mismatched characters as possible to their graphical replacements,
and maps the remaining mismatched characters to the substitution
character.

Informix-supplied code-set conversion source files have header comments
that indicate which method was used.

The following information is specific to Windows. Information for UNIX
appears in “Enabling Code-Set Conversion for UNIX” on page D-56.
D-52 Informix Dynamic 4GL User Guide

Enabling Code-Set Conversion for Windows
Enabling Code-Set Conversion for Windows
Code-set conversion on Windows is handled by INFORMIX-NET for Windows.
There is no portable way to determine which code set an operating system
is using, so you must tell INFORMIX-NET which code set is being used by all
the databases to which your client will be connecting in a single connection.

For INFORMIX-NET to work correctly, all keyboard input, terminal output,
and file input and output must use the same code set on the client computer.
All databases to which your application connects during a single connection
must also use the same code set.

Follow these steps to establish code-set conversion. Each step is described
in more detail in the paragraphs that follow.

To establish code-set conversion

1. Determine the code set that is used by the client.

2. Determine the code set that is used by all the databases to which this
client will connect in a single connection.

3. Determine whether you have an Informix-defined code-set
conversion that is suitable for use between the client and database
code sets.

4. Determine the Informix-defined code-set names that are used to
identify the client and server code sets.

5. Assign the Informix-defined code-set names to the CLIENT_LOCALE
and DB_LOCALE entries in the Windows 95 registry through the
Setnet32 utility, or in the InetLogin structure (login.h file). Programs
deployed on Windows 3.1 can set these entries in the [Environment]

section of the informix.ini file.

6. Launch the 4GL application.

You must modify applications that write blobs to a database to set
loc_loctype (in the locator structure loc_t) to SQLBYTE or SQLTEXT. Setting
this enables INFORMIX-NET to determine if you are writing a binary blob
(SQLBYTE) that should not be converted, or a text blob (SQLTEXT) that should
be converted. You do not need to set this parameter for reading blob data.
Global Language Support D-53

Enabling Code-Set Conversion for Windows
Determining the Code Sets Used by the Client and Database

Because each operating system has its own way of declaring the code set it
is using, see your Windows system documentation or your system adminis-
trator to determine the code set that is used by the client computer.

Your system administrator should also know which code set is being used
by the database.

Determining the Available Code-Set Conversions

All the code-set conversions available to you are located in the
%informixdir%\gls\cv directory. If you have INFORMIX-NET,
%informixdir% indicates the directory in which INFORMIX-NET is installed.

The object file for each conversion has the suffix .cvo. The corresponding
source file for each conversion has the suffix .cv. You need two object files for
each conversion, one for the client-to-server direction and one for the server-
to-client direction. The following table lists a few examples of code-set
conversion files that are currently available.

Code Sets Conversion Files

1250 to and from 852 04E20354.cvo and 035404E2.cvo

1250 to and from ISO8859-2 04E20390.cvo and 039004E2.cvo

1251 to and from 856 04E30362.cvo and 036204E2.cvo

1251 to and from ISO8859-5 04E3E004.cvo and E00404E3.cvo

1252 to and from 437 04E401B5.cvo and 01B504E4.cvo

1252 to and from ISO8859-1 04E40333.cvo and 033304E4.cvo

1252 to and from 850 04E40352.cvo and 035204E4.cvo
D-54 Informix Dynamic 4GL User Guide

Enabling Code-Set Conversion for Windows
Determining the Informix-Defined Name of a Code Set

Each code-set conversion source file indicates the Informix-defined names
of the code sets that it converts in its header comment. Use these names in the
InetLogin structure or (for Windows applications only) in the informix.ini
file to tell INFORMIX-NET what conversion to perform.

The names are defined in the Informix code-set name registry file. This file
is named registry and is located in the directory %informixdir%\gls\cm.

Specifying the Conversion Filenames Using INFORMIX-NET

To enable code-set conversion for INFORMIX-NET, assign the Informix-
defined code-set names to the CLIENT_LOCALE and DB_LOCALE entries in
the InetLogin structure (see the login.h file). For applications deployed on
Windows 3.1, you can add an entry to the informix.ini file with the format:

CLIENT_LOCALE=code-set name of client machine
DB_LOCALE=code-set name of all databases

For example:

CLIENT_LOCALE=1252
DB_LOCALE=ISO8859-1

If your application must run in more than one locale with different code sets,
it is better to set the entries programmatically in the InetLogin structure,
rather than setting the entries with the Setnet32 utility (for Windows 95 and
Windows NT applications) or in the informix.ini file (for Windows 3.1
applications).

You can also set these and other database environment variables through the
Setnet32 program: start Setnet32, and click MORE to display the second page
of options.

To change to a different code-set conversion, close the connection by exiting
from the 4GL application. Then set new values for CLIENT_LOCALE and
DB_LOCALE and restart the application.

To disable code-set conversion through the InetLogin structure, set
CLIENT_LOCALE and DB_LOCALE to NULL or to the same code set.
(To disable code-set conversion on Windows applications, delete the
CLIENT_LOCALE and DB_LOCALE entries from the informix.ini file.)
Global Language Support D-55

To establish code-set conversion

1. Set the SQL_TRANSLATE_DLL parameter to the name of the DLL that
contains the character translation functions.

2. Set the SQL_TRANSLATE_OPTION parameter to a number that
indicates the current translation option.

Options are specific to the driver-specified translation DLL.

Enabling Code-Set Conversion for UNIX
Code-set conversion on UNIX is handled by UNIX environment variables.

To establish code-set conversion on UNIX

1. Determine the code set used by the client.

2. Determine the code set used by all the databases to which this client
will be connecting in a single connection.

3. Specify the conversion filenames.

4. Start the application.

Determining the Code Sets Used by the Client and Database

Because each operating system has its own way of declaring the code set
it is using, consult your UNIX operating system documentation or your
system administrator to determine the code set used by the client computer.

Your system administrator should also know which code set is being used
by the database.

Specifying the Conversion Filenames

Set the DBAPICODE environment variable to specify a code set that has
a mapping file in the message directory $INFORMIXDIR/msg (or a directory
pointed to by the LANG or DBLANG value). The Informix crtcmap utility
helps you to create mapping files.

For more information, see the Informix Guide to SQL: Reference.

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
Numerics
4GL functions, using 6-8
4GL Server 12-3
7.x libraries, finding B-8

A
About Box for Java applets 11-53
a-circumflex character,

coding D-49
AFTER FIELD clause, with HTML

Client 10-8
AIX operating system 2-4
Aliases, with Java Client 11-9
Alphanumeric characters D-24
ALS (Asian language support) D-3,

D-36
Applet viewer, and Java

Client 11-12
Applet, definition of 11-4
Application Server, definition 10-6
Applications

terminating 5-29
Windows, starting 5-20

ar42o script 4-27
Architecture, general Dynamic

4GL 1-5
Arcs, drawing 7-25
Arrays

configuration for HTML
Client 10-65

differences from 4GL 1-7
displaying a row 5-24
with HTML Client 10-26

Asian Language Support
(ALS) D-3, D-37

Asian languages D-4, D-15, D-27
Ataman 12-29

Installing and Configuring 2-22

B
BEFORE FIELD clause, with HTML

Client 10-8
Bidirectional text processing D-17
Big-5 code page D-20
Binary blob D-52
Bitmaps, implementing 6-11
Blobs, text D-24
Border width configuration 9-13
Browser buttons, with HTML

Client 10-9
Button object 9-7
Buttons

adding to a form 6-9
Check 9-7
horizontal title menu 9-7
implementing hot-key 6-6
implementing menu 6-6
key 9-7
Key BMP 9-7
menu 9-7
No Key B-15
relief configuration 9-13

Byte-based string operations D-28
bytecode 11-4

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
C
C code

compiling to 4-19
example 4-19
libraries 2-12, 2-22

C compiler 2-6
C compiler, GNU A-8
C functions

returning key codes from 5-18
using in 4GL applications 4-8

C language A-7
Canadian French language

code D-43
Canvas 9-8
CapsLock and scrollbar,

troubleshooting B-17
Castilian Spanish language

code D-43
CC environment variable A-7
Certificate authority, and HTML

Client 10-47
Channel

closing 5-8
error codes 5-8
extensions 5-3
opening a file 5-4
opening a pipe 5-5
reading data 5-6
setting default separator 5-6
writing data 5-7

CHAR data type D-16
Character filter, creating 5-18
Character set D-12, D-49
Character string printable

characters D-23
Characters, special B-10
Check boxes, implementing 6-11
Check button 9-7
Chinese language D-4, D-15, D-20
Circles, drawing 7-24
CJAC, Cli Java Application

Connector, introduction to 11-5
CJA, Cli Java Applet 11-6
CLASSPATH environment

variable 11-4
Cli Java Applet (CJA) 11-6
Cli Java Application Connector

(CJAC), introduction to 11-5

Client locale D-21
Client/server architecture 1-5
CLIENT_LOCALE environment

variable D-23, D-35, D-39, D-54
cli-html.exe file 10-14
cli-html.iem file 10-71
Closing a channel 5-8
Closing a window 7-10
Code page 1252 D-39
Code points D-12, D-48
Code set D-13
Code-set conversion

files D-53
handling D-48
tables D-24

Collation order D-14, D-17, D-26
COLLCHAR environment

variable D-17
Color settings for Java Client 11-50
Colors

changing line 7-22
configuration 9-10
setting fill 7-23
specifying drawing 7-21

Column name D-25
Combo boxes

implementing as form
extension 6-14

implementing in HTML
Client 10-35

COMMAND KEY options, with
HTML Client 10-8

Comment icons Intro-7
Comments D-23
Common Gateway Interface

(CGI) 11-5
Compatibility of servers D-3
Compilation

sample program 3-4
to C code 4-19
tools for 4-26

Compiling libraries 2-12
Composite characters D-4, D-21,

D-27
confdesi Configuration Manager

program 9-4
Configuration B-18

border width 9-13
color 9-10

general Dynamic 4GL 8-3
general GUI 8-17
HTML Client 10-48
menu style 8-19
numeric fields 9-10
radio buttons 9-10
relief 9-13
settings for HTML Client 10-23
stopping, for colors 9-11
toolbars 8-20
using the Configuration

Manager 9-4
Web applications 10-52
Windows Client 12-31

Configuration file
HTML Client 10-70
Windows Client 12-37

Configuration Manager,
running 9-4

Constant name D-25
Constraint name D-25
Contact information Intro-8
crtcmap utility D-55
Currency symbols D-28
Cursor name D-25
Cursor position

returning 5-27
setting 5-28

Cursors scope range 1-8
Customizing the Windows

Client 12-31
Cyrillic alphabet D-20

D
Danish language code D-43
Data types

CHAR D-16
NCHAR D-14, D-16, D-17
NVARCHAR D-14, D-16, D-17
VARCHAR D-16

Datetime 1-7
DBAPICODE environment

variable D-35
DBASCIIBC environment

variable D-36
DBCODESET environment

variable D-36
2 Informix Dynamic 4GL User Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
DBCONNECT environment
variable D-36

DBCSOVERRIDE environment
variable D-36

DBDATE environment
variable D-35

DBFORMAT environment
variable D-35, D-40

DBLANG environment
variable D-40

DBMONEY environment
variable D-35, D-40

DBNLS environment variable D-17
DB_LOCALE environment

variable D-35, D-38, D-54
DDE

definition 1-10
using 5-8

Debugger D-22
Decimal point D-40
Dependencies, software Intro-5
Deployment D-5, D-22
DG/UX operating system 2-4
Diacritical marks D-13
Dialog boxes, creating 7-12
Differences from 4GL 1-7
Digital UNIX 2-5
Disabling password display, for

HTML Client 10-19
Disk space requirements 2-6
DISPLAY 1-9
DISPLAY ARRAY statement

extension of 5-14
new triggers for 1-11

DISPLAY environment
variable 8-9, 9-4

Display extensions to 4GL 7-3
DISPLAY statement

with HTML Client 10-9
Display width D-28
Displaying installation options 2-8
Documentation, types of Intro-7
DOS naming conventions,

troubleshooting B-12
Drawing area, selecting 7-20
Drawing extensions to 4GL 7-17
Dutch language code D-43
DVM, Dynamic Virtual

Machine 11-3

Dynamic Virtual Machine
(DVM) 11-3

Dynix/Ptx operating system 2-5

E
East Asian languages D-27
Eight-bit clean D-12
Email, with HTML Client

applications 10-36
emm386, enhancing

performance B-19
Emulator, UNIX, starting 5-19
Enhancements for HTML

Client 10-9
envfcomp file 3-3
Environment settings D-21
Environment shell script,

creating 2-13
Environment variables

CC A-7
CLASSPATH 11-4
CLIENT_LOCALE D-23, D-35,

D-39, D-54
COLLCHAR D-17
DBAPICODE D-35
DBDATE D-28, D-35
DBFORMAT D-28, D-35, D-40
DBLANG D-40
DBMONEY D-35, D-40
DBNLS D-17
DB_LOCALE D-38
DISPLAY 8-9, 9-4
Dynamic 4GL Product A-1
FGLCC 3-3, A-4
FGLDBPATH A-2
FGLDBS 3-3
FGLDEBUGON A-7
FGLDIR 3-3, A-3
FGLGUI 1-12, 3-4, 7-4, 13-10, A-2
FGLLDPATH A-5
FGLLIBSQL 3-4, A-5, B-9, B-10
FGLLIBSYS 3-4, A-6, B-10
FGLRUN A-4
FGLSERVER 8-9, 13-6
FGLSHELL 3-4
FGLSQLDEBUG A-6
for TCL/TK 13-5

GCC A-8
GCCDIR A-8
GCC_EXEC_PREFIX A-8
INFORMIXC 2-6
INFORMIXDIR 3-3
INFORMIXHOST 8-13
INFORMIXPROTOCOL 8-12
INFORMIXSERVER 8-13
INFORMIXSERVICE 8-12
INFORMIXSQLHOSTS 8-13
LANG D-44
LC_COLLATE D-17, D-26
LD_LIBRARY_PATH 3-4
PATH 3-4, A-3, A-9, A-10
returning the value D-43
SERVER_LOCALE D-36
setting 3-3
setting for the compiler 4-3
setting in Windows

Registry D-21
setting through Setnet32 D-43
TCLDIR A-9
TCL_LIBRARY A-10
TK_LIBRARY A-10
Windows system language

variables D-42
WINSTATIONNAME 8-9

envtcl shell script 13-8
en_us.1252@dict D-15, D-17
en_us.1252@dict locale D-26
en_us.8859-1 D-17
Error messages and

internationalization D-34
ERROR statement, with HTML

Client 10-9
ESQL/C 2-6
Example C-code program 4-19
Example cjac.cnf file 11-45
Example P-code program 4-6
Extended ASCII character

sets D-12
Extensions to the 4GL language 6-3

F
fgl2c 4-27, 8-5, A-3, B-17
fgl2cres.web file 10-71
fgl2p 4-27, A-4
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
FGLCC environment variable 3-3,
A-4

fglcl file 10-16
fglcl.conf file 10-70
fglcomp program 4-27
FGLDBPATH environment

variable A-2
FGLDBS environment variable 3-3
FGLDEBUGON environment

variable A-7
FGLDIR environment variable 3-3,

A-3
fglfontsel program 4-28
fglfontsel.42e program 4-28
fglform compiler 1-12, 4-27
FGLGUI environment

variable 1-12, 3-4, 7-4, 13-10,
A-2

fglhtmld file 10-16
fglhtmld HTML server

process 10-71
fglinstall script 4-28
FGLLDPATH environment

variable A-5
FGLLIBSQL environment

variable 3-4, A-5, B-9, B-10
FGLLIBSYS environment

variable 3-4, A-6, B-10
fgllink program 4-27
fglmkmsg program 4-28
fglmkmsg utility D-4, D-7
fglmkrun script 4-11
fglnodb runner 4-27
fglpager 1-11
fglpager command 1-11
fglpager script 4-28
fglprofile file

editing for buttons 6-7
fglprofile.web file 10-71
FGLRUN environment

variable A-4
fglrun runner 4-27, 10-6
fglschema A-2
fglschema script 4-27
FGLSERVER environment

variable 8-9, 13-6
FGLSHELL environment

variable 3-4

FGLSQLDEBUG environment
variable A-6

fglWrt program 4-28
fglX11d 8-9, 13-5, A-7
fglX11d daemon 4-28
FGL_GETENV() function D-43,

D-44
Field names, returning 5-23
Field values

returning 5-23
setting 5-23

Fields
relief configuration 9-13
retrieving information from 7-8
returning a value after

modification 5-21
File extensions

.cv D-53

.cvo D-53

.iem D-47

.ini D-42, D-44

.msg D-32
Filename D-25
File, opening with channels 5-4
Fill color, setting 7-23
Filtering router, and HTML

Client 10-46
Filter, creating a custom

character 5-18
findlib.sh script 4-27
Finnish language code D-43
Firewall, and HTML Client 10-46
Font requirements D-14
Fonts for Java Client 11-52
Formal argument D-25
Forms, compiling 4-4
4gluser.msg file D-32
French language D-33
French language code D-43
Function name D-25
Functions, using 4GL 6-8

G
GB 2312-80 code page D-20
GCC A-8
GCC compiler, and SCO B-14
GCC environment variable A-8

GCCDIR environment variable A-8
GCC_EXEC_PREFIX environment

variable A-8
German language code D-43
Glossary of localization terms,

keeping D-33
GLS

installation 2-11
servers D-3

GL_DATE environment
variable D-35

GL_DATETIME environment
variable D-35

GNU C compiler 2-6, A-8
Graphical replacement

conversion D-51
Greek characters D-49
Greek language D-20
GUI configuration settings 8-17

H
Hardware requirements 2-5
Headers and footers, HTML Client

application 10-19
Help messages

compiling 4-4
translating D-27

High-order bit D-12
Horizontal title menu button 9-7
HPUX operating system 2-4
HTML Client

architecture 10-6
configuration 10-48
definition of 10-16
enhancements 10-9
enhancing application

interface 10-18
example 10-72
implementing combo boxes 10-35
installing 10-9
limitations 10-8
manual UNIX installation 10-69
sample application 10-20
sample configuration

settings 10-23
sample forms 10-37
security levels 10-44
4 Informix Dynamic 4GL User Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
server message file 10-71
troubleshooting NT

installation 10-73
HTML Emulation for tables 10-41
HTML server 10-16
HTML tags 10-19
httpd file 10-16
httpd server 10-6

I
Icelandic language code D-43
Icon modification D-27
Icons

Important Intro-7
Tip Intro-7
Warning Intro-7

Identifiers D-24
Important paragraphs, icon

for Intro-7
Index name D-25
InetLogin structure D-52, D-54
INFORMIXC environment

variable 2-6
INFORMIXDIR environment

variable 3-3
INFORMIX-ESQL/C D-13
INFORMIXHOST environment

variable 8-13
INFORMIX-NET D-48, D-54
INFORMIX-NET PC D-3
INFORMIXPROTOCOL

environment variable 8-12
INFORMIX-SE database server D-3
INFORMIXSERVER environment

variable 8-13
INFORMIXSERVICE environment

variable 8-12
INFORMIXSQLHOSTS

environment variable 8-13
informix.ini file D-54
Installation

Dynamic 4GL 2-3
hardware requirements 2-5
HTML Client 10-9
Java Client 11-14
reinstalling Windows Client B-12
TCL/TK 13-4

Windows Client 12-5
X11 Client 13-4

install.sh script 4-28
Internal data file corrupted error,

troubleshooting B-13
International Language

Supplement D-19
Internationalization

codeset conversion D-48
enabling for UNIX D-55
enabling for Windows D-52

definition D-12
fonts D-31
keyboard layouts D-31
measurement systems D-30
messages D-46
overview of methodologies D-34
paper size D-31
reports D-32
translation checklist D-32

IRIX operating system 2-5
ISO 8859 D-12
ISO Standard A4 D-31
Italian language code D-43

J
JA 7.20 supplement D-19
Japanese language D-4, D-15, D-19,

D-20
Java Client

architecture 11-3
enhancements 11-57
installing 11-14
limitations 11-8

Java Foundation Classes (JFC) 11-5
Java, introduction to 11-3
Joins D-37

K
KEY 1-8, 8-28
Key binding, removing 7-19
Key BMP button 9-7
Key button 9-7
Key code values, returning 5-15
Key code, invoking 6-13
KEY Field attribute, setting 6-8

Kinsoku processing D-27
KO 7.20 supplement D-19
Korean language D-4, D-19, D-20
KSC 5601 code page D-20

L
LANG environment variable D-44
Language codes D-43
Language-sensitive files D-45
Language supplement D-19
Language variable D-42
Latin alphabet D-20
LC_COLLATE environment

variable D-17, D-26
LD_LIBRARY_PATH environment

variable 3-4
Length of identifiers D-24
Libraries, 7.x, finding B-8
Libraries, system, finding B-10
licencef4gl script 4-28
License configuration 8-14
Line width, setting 7-22
Line, drawing 7-24
Link errors on Windows B-12
Linking modules 4-7, 4-21
Links between pages, with HTML

Client 10-40
Links, with HTML Client

applications 10-36
Linux operating system 2-5
List boxes 6-4
Locale ID D-42
Locale variables D-44
Locales

client D-21, D-35, D-39, D-54
server D-21, D-35, D-38, D-54

Localization
defined D-12
guidelines D-32

Localized collation order D-14
Logfile names D-24, D-25
Logical characters D-14, D-28
Logical-character-based

operations D-28
login.h file D-52
Lossy conversion D-49
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
M
Macros, and HTML Client 10-27
Manual Unix Installation, for

HTML Client 10-69
Mapping files D-55
Memory fault,

troubleshooting B-18
Menu 9-9
Menu button 9-7
Menus

configuring window area 9-9
default keys 8-34
differences from 4GL 1-8
in multibyte locales D-27
style configuration 8-19

Message box, creating 7-12
Message Compiler D-4, D-7, D-22
Message file, HTML server 10-71
MESSAGE statement, with HTML

Client 10-9
Microsoft Windows Programmer’s

Reference D-32
Mismatch handling D-51
Modern Spanish language

code D-43
Modifying fields and returning a

value 5-21
Mouse management functions 7-18
Mouse usage 1-8
Mouse, and Numlock on X11 B-16
Multibyte locale D-28

N
Named values D-24
Native Language Support

(NLS) D-16, D-32, D-37
NCHAR data type D-14, D-16,

D-17
New features in Dynamic 4GL 1-12
NEXT FIELD clause, with HTML

Client 10-8
NLS functionality D-32
NLS servers D-16
No Key buttons B-15
Non-ASCII characters D-23

Non-composite Thai
characters D-4, D-21

Non-English characters D-50
Nonprintable characters D-23
Norwegian language code D-43
ns-httpd file 10-16
Numeric fields

configuration 9-10
Numlock, troubleshooting B-16
NVARCHAR data type D-14, D-16,

D-17

O
ON KEY actions, with HTML

Client 10-8
On-line manuals Intro-7
Opening a file with channels 5-4
Opening a pipe with channels 5-5
Operating systems supported 2-4
OSF operating system 2-5
Ovals, drawing 7-23

P
P code

compiling to 4-6
creating libraries 2-13
example 4-6
returning key codes from 5-16

pager.42e command 1-11
pager.42e script 4-28
Paper size D-31
Partial characters D-28, D-29
Partitioned application D-21
PATH environment variable 2-6,

3-4, A-3, A-9, A-10
Pathname D-25
Paths, and Java CLient 11-9
People’s Republic of China D-19,

D-20
Pipe

opening 5-5
writing data to 5-7

Polygons, drawing 7-26
Portuguese language code D-43
Prepared statement name D-25
Printable characters D-23

Printed manuals Intro-7
Programs, Java 11-4
Progress Bar for Java applets 11-53
PROMPT statement

differences from 4GL 1-9
with HTML Client 10-8

Q
Quoted string D-24

R
Radio buttons

configuration 9-10
implementing 6-11

Reading data from opened
channel 5-6

Rectangles, drawing 7-23
Registry file D-54
Registry, setting environment

variables in D-21
Relational operators D-14, D-26
Reliant UNIX 2-5
Relief configuration 9-13
Remove key binding 7-19
Report name D-25
Report pager 1-11
Reports, differences from 4GL 1-8
Retrieving information from a

field 7-8
Retrieving information from a

window 7-8
Returning a field value 5-23
Returning cursor position 5-27
Returning field names 5-23
Returning key code values 5-15
Returning value of an environment

variable D-43
Returning values after

changes 5-21
Returning values after mouse

click 7-18
Rlogin, troubleshooting B-11
Round-trip conversion D-51
rtsinstall script 4-28
6 Informix Dynamic 4GL User Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
RUN WITHOUT WAITING
statement, with HTML
Client 10-9

Runner environment, for HTML
Client 10-65

Runner, building 4-10
Russian language D-33

S
Schema file, generating 4-5
SCO Open Server 5, and GCC

compiler B-14
SCO server, troubleshooting B-12
SCO UNIX operating system 2-4
Screen array, displaying a row 5-24
Screen record without size 1-12
Screens, relief configuration 9-13
Scrollbar and capslock,

troubleshooting B-17
Scrolling fields, implementing 6-15
Security levels, and HTML

Client 10-44
Security, troubleshooting for

HTML applications 10-47
Separator, setting default with

channels 5-6
Server compatibility D-3
Server locale D-21
SERVER_LOCALE environment

variable D-36
servlets 11-5
Servlets, and Java client 11-6
Setnet32 utility D-21, D-43, D-54
Setting compiler environment

variables 4-3
Setting cursor position 5-28
Setting field values 5-23
Shift-JIS code page D-20
Single-byte locale D-28
SINIX operating system 2-5
Size, setting default for window 7-6
SLEEP statement with HTML

Client 10-8
Slow rlogin, troubleshooting B-11
Software dependencies Intro-5
Solaris operating system 2-5
Sorting data

in a query D-26
in a report D-26

Spanish language D-33
Spawning methods

for HTML Client 10-26, 10-63
Special characters B-10
SQL identifiers D-24
SQLBYTE data type D-52
sqlexit statement 1-9
SQLTEXT data type D-52
SQL_TRANSLATE_DLL

parameter D-55
SQL_TRANSLATE_OPTION

parameter D-55
SSL, and HTML Client 10-46
Starting a Windows program from

UNIX B-19
Statement label D-25
Statically linked runner,

building 4-10
Stored procedure D-25
Streams

troubleshooting B-14
writing data to 5-7

Strings
character D-23
quoted D-24

Substitution conversion D-51
Substrings D-29
Supported operating systems 2-4
Swedish language code D-43
Swing, and Java 11-5
Synonym, SQL identifier D-25
System libraries, finding B-10
System requirements

database Intro-5
software Intro-5

T
Table name D-25
Table-based localization D-45
Table, with HTML Client 10-39
Tag Words, and Java Client 11-9
Taiwanese D-19, D-20
TCLDIR environment variable A-9
TCL/TK interpreter A-9
Tcl/Tk interpreter 12-3, 13-3, A-9

TCL_LIBRARY environment
variable 13-5, A-10

TCP/IP 8-17, 12-3, 13-3, B-7, B-12
requirements for installation 2-5

Terminating applications 5-29
Text blobs D-24, D-52
Text geometry D-27
Text insertion point,

specifying 7-21
Text labels D-27
Text, drawing 7-25
TH 7.20 supplement D-19
Thai language D-4, D-21, D-27
th_th.thai620 D-4, D-21
Tip icons Intro-7
Title, setting for window 7-7
TK_LIBRARY environment

variable 13-5, A-10
Toolbars

4GL extension 1-11
configuration settings 8-20
creating 7-11

Translation D-34
as part of localization D-12, D-32
checklist D-33

Troubleshooting NT, for HTML
Client 10-73

Turkish language D-20

U
Underscore (_) symbol D-24
UNIX system language

variables D-44
UNIX-based servers D-3, D-48
Unixware operating system 2-4
Upgrading Dynamic 4GL 2-4
Uppercase letters D-26
U.K. English language code D-43
U.S. English language code D-13,

D-43

V
VARCHAR data type D-16
Variable name D-25
View name D-25
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
W
Warning icons Intro-7
Web browser, and Java

Client 11-11
Web Deployment 10-6

installation on UNIX 10-9
Web server 10-6, 10-16
Western European languages D-20
White-space characters D-14, D-24,

D-29
Window management

functions 7-6
Windows applications,

starting 5-20
Windows Client

architecture 12-3
checking for 7-5
command line features 12-22
configuration 12-37
customizing 12-31
DOS naming conventions B-12
example 12-15
link errors B-12
reinstalling B-12
SCO server B-12
security features 12-20
troubleshooting B-11

Windows help facility D-4, D-22,
D-27

Windows program, starting from
UNIX server B-19

Windows, troubleshooting on B-17
Window, closing 7-10
Window, retrieving information

from 7-8
Window, setting active 7-10
Window, setting default size 7-6
Window, setting title 7-7
WINSTATIONNAMEenvironment

variable 8-9
Word length D-30
Workarounds for common

problems B-1
WTK Client 12-3, 12-5
WTK interpreter 10-7

X
X11 8-9, 8-34, 8-35, A-7
X11 Client, example 13-8
X11 daemon 13-3
X11 problems,

troubleshooting B-16
X11, numlock and the mouse B-16
X/Open D-20

Z
ZHCN 7.20 supplement D-19
ZHTW 7.20 supplement D-19

Symbols
.bmp fields, and combo fields 6-14
.class files 11-3
.jar files 11-3
.per file

compared to .html file 10-19
editing for buttons 6-7

.zip files 11-3
8 Informix Dynamic 4GL User Guide

	Answers OnLine Web Site
	Table of Contents
	Introduction
	In This Introduction
	About This Guide
	Organization of This Guide
	Types of Users
	Software Dependencies

	Documentation Conventions
	Typographical Conventions
	Icon Conventions

	Additional Documentation
	Informix Welcomes Your Comments

	Introducing Dynamic 4GL
	In This Chapter
	Introducing Dynamic 4GL
	Windows Interface
	Web Interface
	Text Interface
	GLS Support
	Dynamic 4GL Three-Tier Client/Server Architecture
	Dynamic 4GL Client Example
	Dynamic 4GL Architecture

	Differences Between Dynamic 4GL and 4GL
	4GL Extensions
	New Features in Dynamic 4GL
	Main Features
	Graphical Improvements
	New 4GL Language Features in the 7.3 Release

	Installing Dynamic 4GL
	In This Chapter
	Before Installing Dynamic 4GL
	Upgrading Dynamic 4GL
	Supported Operating Systems
	Hardware Requirements
	TCP/IP Requirements
	Disk Space Requirements

	C-Compiler Requirements
	Informix Client SDK
	Dynamic 4GL Directory

	Installing Dynamic 4GL on UNIX
	Displaying the Installation Options
	Installing Without a CD
	Installing the Dynamic 4GL Files
	GLS Installation
	Licensing the Software
	Licensing After 30 Days
	Avoiding Licensing on Reinstall

	Compiling the Libraries
	Creating the Environment Shell Script

	Preparing to Install Dynamic 4GL on Windows NT
	C-Compiler Requirement
	Informix Database Server Requirement
	TCP/IP Requirement
	Hardware Prerequisite
	Recommended Windows Client Prerequisite

	Installing Dynamic 4GL on Windows NT
	Dynamic 4GL Installation
	Configuring Dynamic 4GL for Windows NT
	Connecting to a Windows NT Database Server

	Post-Installation Tasks
	Installing and Configuring the Ataman Remote Login Service

	Basics of Using Dynamic 4GL
	In This Chapter
	Setting the Environment Variables
	Compiling a Simple Program
	Writing the Source Code
	Compiling the Source Code
	Compiling to P Code
	Compiling to C Code

	Compiling the Form-Specification File
	Viewing the Dynamic 4GL Application

	Using the Dynamic 4GL Compiler
	In This Chapter
	Setting Environment Variables for the Compiler
	Compiling Form-Specification Files and Help Message Files
	Compiling Form-Specification Files
	Compiling Help Message Files

	Generating a Database Schema File
	Compiling to P Code
	Overview of a P-Code Example
	Compiling Source Files to Linkable Modules
	Linking Modules Together to Create P Code

	Using C Functions in 4GL Applications
	Compatibility Problems with C
	Linking C Functions with the P-Code Runner
	Examples

	Compiling to C Code
	Overview of a C-Code Example
	Compiling Source Files to Linkable Modules
	Linking Modules to Create C-Code Libraries

	Using C Functions in 4GL Applications
	Linking C Functions for Use in C-Code Compilations

	Compilation Tools
	Main Compilation Tools
	Other Compilation Tools
	Configuration Tools
	Miscellaneous Programs and Scripts

	Using Non-Graphical Extensions to 4GL
	In This Chapter
	Channel Extensions
	Initializing Channel Extensions
	Opening a File
	Opening a Pipe
	Setting the Default Separator
	Reading Data from an Opened Channel
	Writing Data to a Pipe or Stream
	Closing the Channel

	Channel Error Codes

	Sharing Information Using DDE
	Supported Windows Applications
	Using DDE Extensions
	Transmitting Values to a Windows Program
	Getting Values from a Windows Program
	Closing a DDE Connection
	Closing all DDE Connections

	Extending the DISPLAY ARRAY Statement
	Returning Key Code Values
	Returning Key Codes from P Code
	Returning Key Codes from C Functions
	Creating a Custom Character Filter

	Starting a UNIX Emulator
	Starting Windows Applications
	Using Input Statement Functions
	Returning a Value if a Field has been Modified
	Returning the Name of a Field
	Returning the Value of a Field
	Setting the Value in a Field
	Displaying a Row at a Given Line in a Screen Array
	Returning the Position of the Cursor
	Setting the Cursor Position

	Terminating Applications
	New Language Features
	Enhanced SQL Syntax Support
	Support For Embedded SQL 7.3 Syntax
	Support for Preparable SQL Statements

	Syntax for Expansion of Abbreviated Year Values
	Legacy Support for DBCENTURY
	New CENTURY Field Attribute
	New CENTURY Display Attribute in PROMPT Statements

	Enhanced Syntax for Screen Array Management
	Data Editing in Screen Arrays
	New CURRENT ROW DISPLAY Attribute
	New COUNT Attribute
	New MAXCOUNT Attribute
	New FGL_SCR_SIZE() Built-In Function

	Dynamic Configuration of Report Output
	New Built-In Operators
	String Concatenation Operator
	Synonym for the Equality (=) Relational Operator

	New Syntax to Hide the Comment Line
	Editing Multibyte Data in 4GL Forms
	New Conditional Comments

	Using Form Extensions to 4GL
	In This Chapter
	Implementing List Boxes
	Implementing Buttons
	Menu Buttons
	Hot-Key Buttons
	Editing fglprofile
	Editing the .per File
	Setting the KEY Field Attribute
	Using 4GL Functions

	Buttons in the Form

	Implementing Bitmaps
	Implementing Check Boxes and Radio Buttons
	Check Box Syntax
	Radio Button Syntax
	Invoking a Key Code

	Combo Fields
	Implementing Scrolling Fields
	Creating Folder Tabs

	Using Graphical Extensions to 4GL
	In This Chapter
	Display Extensions
	Calling Dynamic 4GL Libraries
	Checking for UNIX or Windows
	Checking for Windows Client Mode

	Window-Management Functions
	Setting the Default Size of a Window
	Setting the Title of a Window
	Retrieving Information from a Field
	Retrieving Information from an Application Window
	Setting the Active Window
	Closing a Window

	Creating Toolbars and Toolbar Icons
	Creating Dialog Boxes
	Creating an Interactive Message Box
	Displaying an Interactive Message Box
	Formatting Text in a Message Box
	Entering a Field Value into a Message Box

	Using Drawing Extensions
	Mouse-Management Functions
	Returning a Value After a Left Mouse Click
	Returning a Value After a Right Mouse Click
	Remove Key Binding

	Defining the Drawing Area
	Initializing the Drawing Function
	Selecting a Drawing Area
	Specifying the Text Insertion Point
	Setting Line Width
	Clearing the Draw Function
	Drawing Rectangles
	Setting the Fill Color
	Drawing an Oval
	Drawing a Circle
	Drawing a Line
	Drawing Text
	Drawing an Arc
	Drawing a Polygon

	Configuring the Dynamic 4GL Compiler
	In This Chapter
	Configuring Dynamic 4GL
	Runtime Configuration File
	User Configuration File
	Program Configuration File

	General Configuration Settings
	Runtime Configuration Settings
	General Settings
	Graphical Daemon Autostart
	UNIX Settings
	Microsoft Windows Settings

	License Configuration Settings
	General Settings
	UNIX Settings

	GUI Settings
	General GUI Settings
	Menu GUI Settings

	Status Bar Settings
	Memory Mapping Settings
	Local Editing Settings
	Cut, Copy, and Paste Feature Settings

	Using the Configuration Manager
	In This Chapter
	About the Configuration Manager
	Starting the Configuration Manager
	Starting on UNIX
	Starting on Windows

	Using the Dynamic 4GL Configuration Manager
	File Menu
	Widget Menu
	Label Object
	Attributes Object
	Colors Object
	Button Object
	Field Object
	Scrollbar Object
	4GL-Windows Object
	The Help Tip Object

	The Help Menu

	How to Configure an Object with the Configuration Manager
	Opening a File
	Configuration Types
	Color Choice
	Radio Button Choice
	Numeric Field

	The Different Configurations
	Color Configuration
	Relief Configuration
	Border Width Configuration
	Relief and Border Width Attributes
	Attribute for a Specific Window

	Using the HTML Client
	In This Chapter
	Web Deployment Architecture
	Why Deploy on the Web?
	HTML Client Limitations
	HTML Client Enhancements

	Installing the HTML Client
	Installing on UNIX
	Web Deployment Component Requirements
	Components on the CD
	Automatic Installation

	Installing on Windows NT
	Web Deployment Component Requirements
	Location of Web Deployment Components
	Running the Installation Program
	Configuring Your System

	How Web Deployment Works at Runtime
	Supplying Your Own Headers and Footers
	Disabling Password Display
	Similarities Between a .per File and an .html File

	Deploying a Sample Application
	Screens
	Step 1: Creating a Dynamic 4GL Application
	Step 2: Editing the Server Configuration File
	Examples of Configuration Settings
	Results of Updating the Application Configuration File

	Step 3: Creating a Script to Initialize the Application
	Step 4: Editing Your Client Configuration File
	Step 5: Starting the HTML Server Process on UNIX
	Step 6: Starting the Browser
	Step 7: Using the Application
	Step 8: Enhancing the Application
	Creating Email and Web Site Links
	Enhancing the Screen Files
	Horizontal split
	Table
	How Links Between Pages Work
	HTML Emulation for Tables
	Dynamic 4GL Features

	Security Levels
	Default Security
	Recommendations for Enhancing Security
	SSL
	Using a Filtering Router
	Using a Firewall

	Application, Web Server, and Database Security
	Certificate Authority

	Preventing Security Problems

	Configuring the Web Deployment Software
	Configuration Settings in the fglcl.conf file
	Location
	fglserver
	debug
	HTMLdebug
	Security
	Apache Web Server
	Microsoft IIS/Personal Web Server 4.0

	Security Through the Web Server
	Security Through the File System
	Summary

	Configuring the appname.conf File
	General Configuration Settings
	Version
	Application Name
	Client
	Service
	Server Number
	Security Level
	Time Out
	Maximum Tasks
	Debug

	Pre and Post Messages
	Header
	Footer
	Error
	Time-Out Message
	Too Many Tasks
	Normal Termination

	Styles
	Button Down
	Error Down
	Menu as Link
	Button Width
	Menu Button Width
	Emulate HTML
	Image Path
	Image Alternate Text
	Image Border

	Spawning
	Spawning Method
	Program
	Runner Name
	Runner Target
	Runner Environment

	Arrays
	Array as Button
	Array Image

	Troubleshooting the UNIX Installation
	Checking the HTML Client
	Checking the HTML Server

	Manual Installation on UNIX
	Extracting the Files
	Installing the HTML Client on the Web Server
	Installing the HTML Server on the Application Server
	Installing the HTML Documentation on the Web Server
	Installing the Example

	Troubleshooting the Windows NT Installation
	Checking the HTML Client
	Checking the HTML Server

	Using the Java Client
	In This Chapter
	Introduction
	Programs and Applets
	Swing
	Server-Side Components
	How Dynamic 4GL Uses Java
	Java Client Limitations
	Java Client Security
	Java Client Definitions
	Aliases
	Tag Words and Paths

	Requirements
	Java Client Web Browser Requirements
	Client Java Applet Viewer Requirements
	Web Server Hardware and Software Requirements
	Dynamic 4GL Application Server Requirements

	Installing the Java Client
	UNIX Installation
	Verifying Required Components
	Running the Shell Script
	Installing on the Web Server
	Installing the Client Component
	Performing Additional Tasks

	Windows NT Installation
	Automatic Installation
	Manual Installation
	Installing Client Components

	Additional Installation Tasks
	Installing swingall.jar and Setting CLASSPATH on the Client
	Unjarring the cjac.jar file
	Configuring the Servlet Engine for Use with the Java Client
	Verifying Your CLASSPATH Setting on the Web Server
	Testing the Installation

	Configuring the Java Client
	Editing the cjac.cnf File
	Setting Environment Variables
	Setting Commands and Arguments for Application Execution
	Setting General Parameters Governing CJAC Behavior
	cjac.comm.client.http.requestTimeout
	cjac.comm.client.http.requiredBandwidth
	cjac.comm.client.http.getTimeout
	cjac.comm.server.task.reannounceDelay
	cjac.comm.server.task.startUpTimeout
	cjac.comm.server.tcp.basePort
	cjac.comm.server.tcp.maxConnection
	cjac.comm.server.tcp.portRange
	cjac.comm.server.tcp.reuseDelay
	cjac.setup.check.arg
	cjac.setup.check.enabled

	Sample cjac.cnf file
	Local and Remote Connections to the Application Server

	Editing the clijava.cnf File
	Changing Colors
	Configuring Interface Elements
	Font Types and Known Font Equivalents
	Configuring Other Java Applet Elements

	Running an Application with the Java Client
	Creating the HTML Page
	Setting CJA Parameters
	Parameter Settings not Available in clijava.cnf
	Parameter Settings Available in clijava.cnf

	Running the Application
	Java Client Enhancements

	Using the Windows Client
	In This Chapter
	Windows Client Architecture
	Windows Client Requirements
	Windows 3.1 Requirements
	Monitor Requirements

	Dynamic 4GL Server Requirements
	Remote UNIX Computer
	Remote Windows NT Computer

	Installing the Windows Client
	After the Installation

	Installing the Windows Client on a Network

	Starting and Configuring the Windows Client
	Starting the 4GL Server
	Creating a Connection
	Command-Line String Information

	Connection Checking
	Example
	Debugging the Connection

	Windows Client Language
	Setting the Server Environment Variables
	Using the VGA Driver with Windows 3.1

	Running the Windows Client Example
	Configuring the Environment Variables
	Starting a P-Code Application
	Authorizing the Client Computer
	Starting a C-Code Application
	Successful Connection

	Security Features
	Authorizing a Connection
	Connecting Without a Password
	Recording the Computer Name in the /etc/hosts.equiv File
	Recording the Computer Name in the .rhosts File
	The rcp UNIX Command

	Command-Line Features
	Special Tags Features
	ilogin Command-Line Features
	Invisible Terminal Emulation

	Customizing the Login Dialog Box
	Using Ataman Remote Connection Services

	Adding a Scrollbar to the Terminal Emulation Window
	System Colors
	Customizing the Windows Client Installation
	Customizing Icons, Titles, and Directories
	Specifying the Windows Client Icons
	Installing Documentation

	Configuration Files
	Configuration File (WTKSRV.INI) Entries
	Splash Screen Configuration
	Client Configuration
	Server Configuration
	Sample Configuration

	User-Defined Configuration File
	User-Definable WTKSRV.INI Entries

	Winframe from CITRIX
	First Method
	Second Method

	Using the X11 Client
	In This Chapter
	UNIX X11 Client Configuration
	Installing the X11 Client
	Prerequisites
	Installing Tcl/Tk
	Manually Installing Tcl/Tk
	Installing the X11 Daemon
	Setting the Tcl/Tk Environment Variables

	Managing Application Windowing
	Running the Program on the X11 Client
	Displaying the TCL Interpreter
	Configuring the Environment
	Starting the Application Using the X11 Client

	Environment Variables
	Common Problems and Workarounds
	Error Messages
	Global Language Support
	Partially Supported WTK Character Sets
	Setting the CLIENT_LOCALE Variable

	Index

